作业帮 > 数学 > 作业

如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB,AC上的动点,且满足BP=AQ,D是BC的中点.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 04:28:28
如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB,AC上的动点,且满足BP=AQ,D是BC的中点.
(1)求证:△PDQ是等腰直角三角形;
(2)当点P运动到什么位置时,四边形APDQ是正方形,说明理由.
如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB,AC上的动点,且满足BP=AQ,D是BC的中点.
解(1)证:∵D是BC的中点.△ABC是等腰直角三角形
∴∠PBD=∠QAD AD=BD
又BP=AQ
∴△PDB≌△QAD(SAS)
∴ ∠PDB=∠ADQ QD=PD
又∠ADB=90°
∴∠PDQ=90°
∴△PDQ是等腰直角三角形
(2)当点P运动到AB中点时,四边形APDQ是正方形
△ABD等腰直角三角形 P中点
∴△ADP等腰直角三角形
同理△AQD等腰直角三角形
∴四边形APDQ是正方形