用数学归纳法证明:1*3*5*……*(2n-1)*2^n=(n+1)(n+2)……(2n)(n属于自然数)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:08:10
用数学归纳法证明:1*3*5*……*(2n-1)*2^n=(n+1)(n+2)……(2n)(n属于自然数)
① 当n=1时,
左=1×2=2,
右=2,
等式成立.
② 设 当n=k时,等式也成立,即:
1×3×5……×(2k-1)×2ˆk=(k+1)×(k+2)…(2k)
则 当n=k+1
1×3×5……[2(k+1)-1]×2ˆ(k+1)
=1×3×5……(2k+1)×2^k×2
=1×3×5……(2k-1)×2^k×(2k+1)×2
=(k+1)×(k+2)…(2k)×(2k+1)×2
=(k+2)×(k+3)…(2k)×(2k+1)×(k+1)×2
=(k+1+1)(k+1+2)(k+1+3)……(k+1+k)2(k+1)
即 当n=k+1时等式也成立
由①、②可知猜想对任何n属于自然数都成立
左=1×2=2,
右=2,
等式成立.
② 设 当n=k时,等式也成立,即:
1×3×5……×(2k-1)×2ˆk=(k+1)×(k+2)…(2k)
则 当n=k+1
1×3×5……[2(k+1)-1]×2ˆ(k+1)
=1×3×5……(2k+1)×2^k×2
=1×3×5……(2k-1)×2^k×(2k+1)×2
=(k+1)×(k+2)…(2k)×(2k+1)×2
=(k+2)×(k+3)…(2k)×(2k+1)×(k+1)×2
=(k+1+1)(k+1+2)(k+1+3)……(k+1+k)2(k+1)
即 当n=k+1时等式也成立
由①、②可知猜想对任何n属于自然数都成立
用数学归纳法证明:1*3*5*……*(2n-1)*2^n=(n+1)(n+2)……(2n)(n属于自然数)
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)在线等
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
用数学归纳法证明:n大于等于2,n 属于N,1/2^2+a/3^2+……+1/n^2小于(n-1)/n
用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N
用数学归纳法证明1+2+3+…+2n=n(2n+1)
用数学归纳法证明:1*3*5*.*(2n-1)*2^n=(n+1)(n+2).(2n)(n属于N*)
数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
用数学归纳法证明“(n+1)(n+2)…(n+n)=2^n·1·3·5…(2n-1)(n∈N*)”时,从n=k到n=k+
用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N