如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,交y轴于点C,过点C作CD⊥y轴交该抛物线于点D,且AB
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 11:23:38
如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,交y轴于点C,过点C作CD⊥y轴交该抛物线于点D,且AB=2,CD=4.
(1)该抛物线的对称轴为______,B点坐标为(______),CO=______;
(2)若P为线段OC上的一个动点,四边形PBQD是平行四边形,连接PQ.试探究:
①是否存在这样的点P,使得PQ2=PB2+PD2?若存在,求出此时点P的坐标;若不存在,请说明理由.
②当PQ长度最小时,求出此时点Q的坐标.
(1)该抛物线的对称轴为______,B点坐标为(______),CO=______;
(2)若P为线段OC上的一个动点,四边形PBQD是平行四边形,连接PQ.试探究:
①是否存在这样的点P,使得PQ2=PB2+PD2?若存在,求出此时点P的坐标;若不存在,请说明理由.
②当PQ长度最小时,求出此时点Q的坐标.
(1)∵点C在y轴上,CD=4,
∴抛物线的对称轴为直线x=
4
2=2,
∵AB=2,
∴点B的横坐标为2+
2
2=3,
∴点B的坐标为(3,0);
∵对称轴为直线x=-
b
2×1=-2,
∴b=-4,
∵点B(3,0)在抛物线上,
∴9-4×3+c=0,
解得c=3,
∴CO=3;
(2)①不存在这样的点P,使得PQ2=PB2+PD2.
理由如下:∵四边形PBQD是平行四边形,
∴PB=DQ,
若PQ2=PB2+PD2,则PQ2=DQ2+PD2,
∴∠PDQ=90°,
∵四边形PBQD是平行四边,
∴PB∥DQ,
∴∠BPD=180°-90°=90°,
∴△PBO∽△DPC,
∴
PO
CD=
BO
PC,
设OP=m,则
m
4=
3
3−m,
整理得,m2-3m+12=0,
△=(-3)2-4×1×12=-39<0,
∴这个方程没有实数根,
∴不存在这样的点P,使得PQ2=PB2+PD2;
②连接BD交PQ于M,
∵四边形PBQD是平行四边形,
∴M为BD、PQ的中点,
∴PQ取得最小值时,MP必定取得最小值,
根据垂线段最短,当P为OC的中点时,PQ最小,
此时,MP为梯形OBDC的中位线,MP∥OB,MP⊥y轴,
MP=
1
2×(3+4)=
7
2,
∴PQ的最小值为2×
7
2=7,
此时,点Q的坐标为(7,
3
2).
故答案为:直线x=2;(3,0);3.
∴抛物线的对称轴为直线x=
4
2=2,
∵AB=2,
∴点B的横坐标为2+
2
2=3,
∴点B的坐标为(3,0);
∵对称轴为直线x=-
b
2×1=-2,
∴b=-4,
∵点B(3,0)在抛物线上,
∴9-4×3+c=0,
解得c=3,
∴CO=3;
(2)①不存在这样的点P,使得PQ2=PB2+PD2.
理由如下:∵四边形PBQD是平行四边形,
∴PB=DQ,
若PQ2=PB2+PD2,则PQ2=DQ2+PD2,
∴∠PDQ=90°,
∵四边形PBQD是平行四边,
∴PB∥DQ,
∴∠BPD=180°-90°=90°,
∴△PBO∽△DPC,
∴
PO
CD=
BO
PC,
设OP=m,则
m
4=
3
3−m,
整理得,m2-3m+12=0,
△=(-3)2-4×1×12=-39<0,
∴这个方程没有实数根,
∴不存在这样的点P,使得PQ2=PB2+PD2;
②连接BD交PQ于M,
∵四边形PBQD是平行四边形,
∴M为BD、PQ的中点,
∴PQ取得最小值时,MP必定取得最小值,
根据垂线段最短,当P为OC的中点时,PQ最小,
此时,MP为梯形OBDC的中位线,MP∥OB,MP⊥y轴,
MP=
1
2×(3+4)=
7
2,
∴PQ的最小值为2×
7
2=7,
此时,点Q的坐标为(7,
3
2).
故答案为:直线x=2;(3,0);3.
如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,交y轴于点C,过点C作CD⊥y轴交该抛物线于点D,且AB
如图,已知抛物线y=ax2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.
已知二次函数y=ax^2+bx+c(a>0)的图象与x轴交于A、B两点,且点A在点B的左边,与y轴交于点C,且过点M(-
已知二次函数y=x2+bx+c的图象过点A(-3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是-2.
已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形
如图,已知二次函数y=x2+bx+c 的图象与x轴交于A、B两点,与y轴交于点P,顶点为C(-1,2 ).(1)求此函数
如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(2,-9).
如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,-2).
一道数学题:如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.过点A作AP∥BC交抛物线于点P.
如图,已知抛物线y=1/2x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=2OA=4
如图,抛物线y=二分之一x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1.0).
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上