对于函数f(x)(x≠0)恒有f(ab)=f(a)+f(b)且x>1时f(x)>0,f(2)=1,(1)求f(-1)的值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 05:58:35
对于函数f(x)(x≠0)恒有f(ab)=f(a)+f(b)且x>1时f(x)>0,f(2)=1,(1)求f(-1)的值
(2)求证f(x)为偶函数 (3)求证f(x)在(0,+∞)上是增函数 (4)解不等式f(x²-5)<2
(2)求证f(x)为偶函数 (3)求证f(x)在(0,+∞)上是增函数 (4)解不等式f(x²-5)<2
(1)∵f(ab)=f(a)+f(b)
∴f(x)=f(-1)+f(-x) (x≠0) ①
f(-x)=f(-1)+f(x) →f(x) = -f(-1)+f(-x) (x≠0)②
由①-②可得f(-1)=0
(2)∵f(ab)=f(a)+f(b) → f(x)=f(-1)+f(-x)(x≠0),而由(1)可得f(-1)=0
∴ f(x)= f(-x) (x≠0)
得证f(x)为偶函数
(3)设x1> x2> 0,则x1/x2> 1,f(x1/x2) > 0
而f(x1)=f(x1/x2)+f(x2) →f(x1)-f(x2)=f(x1/x2) > 0
故f(x)在(0,+∞)上是增函数
(4)∵f(2)=1,f(x²-5)<2=2 f(2)= f(2)+ f(2)= f(4)
由(3)可知∣x²-5∣<4 ③
解不等式③可得:1<x²<9
→1<x<3或者-3<x<-1
十年没有接触过这些了.感觉有点陌生呀,
∴f(x)=f(-1)+f(-x) (x≠0) ①
f(-x)=f(-1)+f(x) →f(x) = -f(-1)+f(-x) (x≠0)②
由①-②可得f(-1)=0
(2)∵f(ab)=f(a)+f(b) → f(x)=f(-1)+f(-x)(x≠0),而由(1)可得f(-1)=0
∴ f(x)= f(-x) (x≠0)
得证f(x)为偶函数
(3)设x1> x2> 0,则x1/x2> 1,f(x1/x2) > 0
而f(x1)=f(x1/x2)+f(x2) →f(x1)-f(x2)=f(x1/x2) > 0
故f(x)在(0,+∞)上是增函数
(4)∵f(2)=1,f(x²-5)<2=2 f(2)= f(2)+ f(2)= f(4)
由(3)可知∣x²-5∣<4 ③
解不等式③可得:1<x²<9
→1<x<3或者-3<x<-1
十年没有接触过这些了.感觉有点陌生呀,
对于函数f(x)(x≠0)恒有f(ab)=f(a)+f(b)且x>1时f(x)>0,f(2)=1,(1)求f(-1)的值
设f(x)是二次函数,且对于任意x∈R,有f²(x)+1=f[f(x)],求f(x)的表达式.
设F(x)为f(x)的原函数,当x≥0时,有f(x)F(x)=(sin2x)^2,且F(0)=1,F(x)≥0,求f(x
函数f(x)对于任意的a.b属于R都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1,求证f(x)是
已知函数f(x)(x∈R且x>0),对于定义域内任意x、y恒有f(xy)=f(x)+f(y),并且x>1时,f(x)>0
已知函数f(x)对于一切x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时f(x)< f(1)= -2
设f(x)是定义域N*上的函数,f(1)=1,对于任意自然数a,b都有f(a)+f(b)=f(a+b)-ab,求f(x)
设f(x)是定义在R上的函数,且对于任意x,y属于R,恒有f(x+y)=f(x)f (y),且当x大于0时,f(x)>1
已知函数f(x)=x/(ax+b),(a,b为常数,且ab≠0),且f(2)=1,f(x)=x有惟一解,则y=f(x)的
已知f(x)是定义在(0,+∞)上的函数,对于任意的正数x,y都有f(xy)=f(x)+f(y)成立,且当x>1时f(x
已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立.求f(0)与f(1)的值
f(x) 在定义域(0,正无穷)上是增函数,满足f(2)=1,f(xy)=f(x)+f(y).求不等式f(x)+f(x-