已知数列(an)满足a1=1,a2=2,a(n+2)=1/2(an+a(n+1)),n属于自然数
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 17:55:54
已知数列(an)满足a1=1,a2=2,a(n+2)=1/2(an+a(n+1)),n属于自然数
求an的通向公式
求an的通向公式
令bn=a(n+1)-an
2a(n+2)=an+a(n+1)
∴2[a(n+2)-a(n+1)]=an-a(n+1)=-[a(n+1)-an]
bn=a(n+1)-an,∴2b(n+1)=-bn,即b(n+1)/bn=-1/2
∴{bn}是等比数列
b1=a2-a1=2-1=1,{bn}是首项为1,公比为-1/2的等比数列
∴bn=1*(-1/2)^(n-1)
∴a(n+1)-an=(-1/2)^(n-1)
∴an-a(n-1)=(-1/2)^(n-2),
a(n-1)-a(n-1)=(-1/2)^(n-3)
……
a2-a1=(-1/2)^0
上面各式叠加得 an-a1=(-1/2)^0+……+(-1/2)^(n-3)+(-1/2)^(n-2)
=[1-(-1/2)^(n-1)]/(1+1/2)=(2/3)[1-(-1/2)^(n-1)]
∴an=a1+(2/3)[1-(-1/2)^(n-1)]=5/3-(2/3)*(-1/2)^(n-1)=5/3+(1/3)*(-1/2)^(n-2)
2a(n+2)=an+a(n+1)
∴2[a(n+2)-a(n+1)]=an-a(n+1)=-[a(n+1)-an]
bn=a(n+1)-an,∴2b(n+1)=-bn,即b(n+1)/bn=-1/2
∴{bn}是等比数列
b1=a2-a1=2-1=1,{bn}是首项为1,公比为-1/2的等比数列
∴bn=1*(-1/2)^(n-1)
∴a(n+1)-an=(-1/2)^(n-1)
∴an-a(n-1)=(-1/2)^(n-2),
a(n-1)-a(n-1)=(-1/2)^(n-3)
……
a2-a1=(-1/2)^0
上面各式叠加得 an-a1=(-1/2)^0+……+(-1/2)^(n-3)+(-1/2)^(n-2)
=[1-(-1/2)^(n-1)]/(1+1/2)=(2/3)[1-(-1/2)^(n-1)]
∴an=a1+(2/3)[1-(-1/2)^(n-1)]=5/3-(2/3)*(-1/2)^(n-1)=5/3+(1/3)*(-1/2)^(n-2)
已知数列(an)满足a1=1,a2=2,a(n+2)=1/2(an+a(n+1)),n属于自然数
已知数列{an}满足a1=1,a1+a2+a3+.+a(n-1)-an=-1(n≥2且n属于N+).
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
已知数列{an}满足a1=1,a2=2,a(n+2)=(an+a(n+1))/2,n属于正整数.求{an}的通项公式.
已知数列{an}满足a1=1;an=a1+2a2+3a3+...+(n-1)a(n-1);
设数列{An}满足A1+3A2+3^2*A3+...+3^(n-1)*An=n/3,a属于正整数.
已知数列{an}满足a1=1,an=a1 +1/2a2 +1/3a3 … +1/(n-1)a(n-1),(n>1,n∈N
已知数列{an}满足a1=1,a2=3,a(n+2)=3a(n+1)-2an
设数列{an}满足a1+3 a2+3^2 a3+……+3^n-1 an=n/3,a属于N* 求数列{an}的通项
数列{an}对一切自然数n属于N+满足a1+2a2+22a3+...+2n-1an=9-6n,求{an}的通项公式
已知数列{an}满足a0=1,an=a0+a1+a2+...+a(n-1) (n≥2且n属于N*),则当n属于N*时an
数列an中,a1=1,a2=2数列bn满足an+1+(-1)n次an,a属于N* (1)若an等差数列...