如图,在平面直角坐标系xOy中,以Ox轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A、B两点,已
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 19:08:42
如图,在平面直角坐标系xOy中,以Ox轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A、B两点,已
A、B的纵坐标分别为7根号2/10,和根号5/5
求(1)求α+2β的一个三角函数值,并求角α+2β的值
A、B的纵坐标分别为7根号2/10,和根号5/5
求(1)求α+2β的一个三角函数值,并求角α+2β的值
(1)
∵是单位圆
∴半径r=1
∵yA=(7√2)/10,yB=(√5)/5
∴sinα=yA/r=(7√2)/10,sinβ=yB/r=(√5)/5
∵α和β都是锐角
∴cosα>0,cosβ>0
∴cosα=√[1-(sinα)^2]=√{1-[(7√2)/10]^2}=(√2)/10,cosβ=√[1-(sinβ)^2]=√{1-[(√5)/5]^2}=(2√5)/5
∴tanα=sinα/cosα=[(7√2)/10]/[(√2)/10]=7,tanβ=sinβ/cosβ=[(√5)/5]/[(2√5)/5]=1/2
∴tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)=(7+1/2)/(1-7/2)=-3
(2)
∵tanβ=1/2
∴tan(2β)=(2tanβ)/[1-(tanβ)^2]=(2*1/2)/[1-(1/2)^2]=4/3
∵tanα=7
∴tan(α+2β)=[tanα+tan(2β)]/[1-tanαtan(2β)]=(7+4/3)/(1-7*4/3)=-1
∵β是锐角
∴0
∵是单位圆
∴半径r=1
∵yA=(7√2)/10,yB=(√5)/5
∴sinα=yA/r=(7√2)/10,sinβ=yB/r=(√5)/5
∵α和β都是锐角
∴cosα>0,cosβ>0
∴cosα=√[1-(sinα)^2]=√{1-[(7√2)/10]^2}=(√2)/10,cosβ=√[1-(sinβ)^2]=√{1-[(√5)/5]^2}=(2√5)/5
∴tanα=sinα/cosα=[(7√2)/10]/[(√2)/10]=7,tanβ=sinβ/cosβ=[(√5)/5]/[(2√5)/5]=1/2
∴tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)=(7+1/2)/(1-7/2)=-3
(2)
∵tanβ=1/2
∴tan(2β)=(2tanβ)/[1-(tanβ)^2]=(2*1/2)/[1-(1/2)^2]=4/3
∵tanα=7
∴tan(α+2β)=[tanα+tan(2β)]/[1-tanαtan(2β)]=(7+4/3)/(1-7*4/3)=-1
∵β是锐角
∴0
如图,在平面直角坐标系xOy中,以Ox轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A、B两点,已
如图,在平面直角坐标系xOy中,以Ox轴为始边做两个锐角α,β,它们的终边分别与单位圆相交与A、B两点,已知A、B的纵坐
在平面直角坐标系xOy中,以Ox轴为始边做两个锐角α、β,它们的终边分别与单位圆O相交于A、B两点
在平面直角坐标系xoy中,以ox轴为始边做两个锐角a,b,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别
如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐
已知:如图,在平面直角坐标系xOy中,以点P(2,)为圆心的圆与y轴相切于点A,与x轴相交于B、C两点(点B在
在平面直角坐标系xOy中已知AB在X轴上,分别以AB为圆心的两圆相交于M[a,5]N[9,b]两点则a+b的值为
(2012•盐田区二模)已知:如图,在平面直角坐标系xOy中,以点P(2,3)为圆心的圆与y轴相切于点A,与x轴相交于B
如图在平面直角坐标系xOy中以O(2,根号3)为圆心的○O与y轴切于点A,与x轴交于A,B两点(1)判断并证明ABCO的
如图,在平面直角坐标系xOy中,以点M(0,1)为圆心,以2长为半径作圆M交x轴于点A,B两点,交y轴于C,D两点,连接
如图,在平面直角坐标系xOy中,点A坐标为(2,1),以A为圆心,2为半径的圆与x轴交于M,N两点.
如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,点A的坐标为(6,0 ),OC与⊙D相交于