已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:24:20
已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)
f(x+y)=f(x)+f(y),
(1)令x=y=0
∴f(0)=2f(0),∴f(0)=0
令y=-x
∴f(0)=f(x)+f(-x)
∴0=f(x)+f(-x)
∴ f(-x)=-f(x)
∴ f(x)是奇函数;
(2)
设x10
令x+y=x2,x=x1
f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1)
所以f(x2)-f(x1)=f(x2-x1)
∵x>0时f(x)0可得,f(x2-x1)
(1)令x=y=0
∴f(0)=2f(0),∴f(0)=0
令y=-x
∴f(0)=f(x)+f(-x)
∴0=f(x)+f(-x)
∴ f(-x)=-f(x)
∴ f(x)是奇函数;
(2)
设x10
令x+y=x2,x=x1
f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1)
所以f(x2)-f(x1)=f(x2-x1)
∵x>0时f(x)0可得,f(x2-x1)
已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)
设函数y=f(x)定义域为R,当x>0时f(x)>1,且对于任意的x,y∈R有f(x+y)=f(x)·f(y)成立
定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时,f(x)
定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时,f(x)
设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)*f(y)
已知函数y=f(x)的定义域为R,对任意x,y∈R,均有f(x+y)=f(x)+f(y),且对任意x>0都有f(x)<0
设函数f(X)是定义域在R上的函数,且对于任意实数x y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)
设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)*f(y),当X>0,0
已知函数y=f(x)的定义域为R,对任意x,x`∈R,均有f(x+x`)=f(x)+f(x`),且对任意x>0都有f(x
已知函数f(x)的定义域为R,且对于任意实数x、y总有f(x+y)=f(x)·f(y)
定义域为R的函数f(x)满足:对于任意的实数xy都有f(x+y)=f(x)+f(y)成立.且当x大于0时 f(x)小于0
已知函数f(x)对于任意的x,y∈R都满足f(x+y)=f(x)+f(y),且当x>0时f(x)>0恒成立 证明f(x)