若不等式1/(n+1)+1/(n+2)+…+1/(n+2n)>m/2100对一切大于1的自然数n都成立,则整数m的最大值
若不等式(1/n+1)+(1/n+2)+...+(1/2n)>(m/72)对一切大于1的自然数n都成立,求整数m的最大值
若不等式1/(n+1)+1/(n+2)+…+1/(n+2n)>m/2100对一切大于1的自然数n都成立,则整数m的最大值
1/n+1+1/n+2+1/n+3+...+1/2n>m/24n对于一切n∈n都成立,则正整数m的最大值为
函数f(x)的定义域为R,若对一切实数m.n都有f(m-n)=f(m)+(n-2m-1)n成立.
已知不等式1n+1+1n+2+…+12n>a对一切大于1的自然数n都成立,则a的取值范围是( )
若不等式1/n+1...+ 1/3n+1> a/24 对一切自然数n(n≠0)成立,求自然数a的最大值
急!求正整数的最大值,使不等式(1/n+1)+(1/n+2)+...+(1/3n+1)>a-7,对一切正整数n都成立.
若不等式 1/n+1 + 1/n+2 + 1/n+3 + … + 1/2n > m/24 对于一切正整数都成立,则正整数
1/n+1 + 1/n+2 + 1/n+3 +.+1/2n>a对于一切大于1的自然数n都成立,求a的范围
已知不等式:1/n+1 + 1/n+2 +……+1/n+n>1/12㏒a(a-1)+2/3对一切大于1的自然数n恒成立,
求自然数a的最大值,使得不等式1/(n+1)+1/(n+2)+……+1/(3n+1)>2a+5对一切正整数n
证明:对大于2的一切正整数n,下列不等式成立(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n) ≥ n^