作业帮 > 数学 > 作业

已知△ABC和△ADE分别是以AB、AE为底的等腰直角三角形,以CE,CB为边作平行四边形CEHB,连DC,CH.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 06:32:27
已知△ABC和△ADE分别是以AB、AE为底的等腰直角三角形,以CE,CB为边作平行四边形CEHB,连DC,CH.

(1)如图1,当D点在AB上时,则∠DEH的度数为______;CH与CD的数量关系是______.
(2)将图1中的△ADE绕A点逆时针旋转45°得图2,(1)中结论是否成立,试说明理由.
(3)将图1中的△ADE绕A点顺时针旋转α(O°<α<45°)得图3,请探究CH与CD之间的数量关系,并给予证明.
已知△ABC和△ADE分别是以AB、AE为底的等腰直角三角形,以CE,CB为边作平行四边形CEHB,连DC,CH.
(1)∵△ABC和△ADE是等腰直角三角形,四边形CEHB为平行四边形,
∴∠AED=45°,∠AEH=∠ACB=90°,
∴∠DEH=45°,连DH,如图1,
∵∠DEH=90°-∠DEA=45°,
∴∠A=∠DEH,
∵AD=ED,AC=CB=EH,
∴△DAC≌△DEH,
∴DH=DC,∠ADC=∠EDH,
∴∠ADE=∠CDH=90°,
∴△DHC为等腰直角三角形,
∴CH=
2DC.
(2)∵图1中的△ADE绕A点逆时针旋转45°得图2,
∴∠DEA=45°,
∴DE∥AC,
∵BC∥HE,∠ACB=90°,
∴∠DEH=90°,
又∵DA=DE,AC=BC=EH,
∴Rt△ADC≌Rt△EDH,
∴DC=DH,即△DHC为等腰直角三角形,
∴CH=
2CD.
(3)CH=
2CD;
连DH,如图3,
∵图1中的△ADE绕A点顺时针旋转α(O°<α<45°)得图3,
∴∠DAC=45°-α,
∵CB∥HE,
∴∠AME=∠ACB=90°,
∵∠1=∠2,∠ADE=∠AME=90°,
∴∠DEH=∠DAM=45°-α,
∵∠DEH=90°-45°-α=45°-α,
∴∠DAC=∠DEH,
∵DA=ED,CA=CB=EH,
∴△DAC≌△DEH,
∴DC=DH,∠ADC=∠EDH,
∴∠ADE=∠CDH=90°,
∴HC=
2CD.
故答案为:(1)45°,CH=
2CD.