已知双曲线x^2/a^2-y^2/b^2=1的有顶点与抛物线y^2=2px(p>0)的有焦点的距离为4,且双曲线的一条渐
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:49:26
已知双曲线x^2/a^2-y^2/b^2=1的有顶点与抛物线y^2=2px(p>0)的有焦点的距离为4,且双曲线的一条渐近线与
分析:根据题意,点(-2,-1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(-2,-1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),
即点(-2,-1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=- p/2,则p=4,
则抛物线的焦点为(2,0);
则双曲线的左顶点为(-2,0),即a=2;
点(-2,-1)在双曲线的渐近线上,则其渐近线方程为y=±2x,
由双曲线的性质,可得b=1;
则c= 根号5,则焦距为2c=2 根号5;
故选B.点评:本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.
即点(-2,-1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=- p/2,则p=4,
则抛物线的焦点为(2,0);
则双曲线的左顶点为(-2,0),即a=2;
点(-2,-1)在双曲线的渐近线上,则其渐近线方程为y=±2x,
由双曲线的性质,可得b=1;
则c= 根号5,则焦距为2c=2 根号5;
故选B.点评:本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.
已知双曲线x^2/a^2-y^2/b^2=1的有顶点与抛物线y^2=2px(p>0)的有焦点的距离为4,且双曲线的一条渐
已知双曲线X^2/a^2-Y^2/b^2=1与抛物线Y^2=8X有一公共焦点F,且两曲线焦点P到F的距离为5,求双曲线渐
已知抛物线y^2=2px(p>0)的焦点F与双曲线x^2-y^2/x=1的右顶点重合,抛物线与直线
已知抛物线y²=2px(p>0)与双曲线x²-y²=1的一个交点为M,双曲线的两个焦点分别
已知双曲线C1:X^2/a^2-Y^2/b^2=1的右焦点F为抛物线C2:y^2=2px的焦点,点p为双曲线C1与抛物线
已知抛物线y^2=2px(p>0)的焦点F恰为双曲线x^2/a^2-y^2/b^2=1(a>0,b>
已知抛物线y^2=2px(p>0)上一点M(1,m)(m>O)到其焦点的距离为5,双曲线x^2/a-y^2=1的左顶点为
已知抛物线y²=2px(p>1)的焦点f恰为双曲线x²/a²-y²/b²
已知抛物线y^2=2px(p>0)的焦点F恰为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点,且两曲
已知抛物线y平方=2px(p>0)上一点M(1,m)(m>0)到焦点距离为5,双曲线x平方/a-y平方=1的左焦点为A
已知抛物线y^2=2px(p>0)与双曲线x^2\a^2-y^2\b^2=1有相同的焦点F,点A是两曲线的一个交点,AF
已知抛物线Y^2=2PX(P>0)与双曲线X^2\(根号2-1)^2-Y^2\B^2=1.有相同的焦点F,点A是两曲线的