椭圆C x^2/a^2+y^2/b^2=1 (a>b>0)的离心率为√3/2,过右焦点F且斜率为k k>0的直线交椭圆A
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 22:39:04
椭圆C x^2/a^2+y^2/b^2=1 (a>b>0)的离心率为√3/2,过右焦点F且斜率为k k>0的直线交椭圆A B AF→=3FB→ K?
离心率为 根号3 除以2
离心率为 根号3 除以2
做椭圆右准线,从A、B分别做准线的垂线AM、BN,垂足M、N,
做BD⊥AM,垂足D,
根据椭圆第二定义,
e=|AF|/|AM|,
e=|BF|/BN|,
|AF|/|BF|=|AM|/BN|=3,
|AM|=3|BN|,
|MD|=|NB|,
|AD|=2|MD|,
|AD|=2|MA|/3,
又因|AF|/|AM|=√3/2,所以|AB|=4/3|AF|=2√3/3|AM|,
∴|AD|/|AB|=√3/3,
设直线倾斜角是θ,即有cosθ=√3/3,
所以直线斜率k=tanθ=√2
做BD⊥AM,垂足D,
根据椭圆第二定义,
e=|AF|/|AM|,
e=|BF|/BN|,
|AF|/|BF|=|AM|/BN|=3,
|AM|=3|BN|,
|MD|=|NB|,
|AD|=2|MD|,
|AD|=2|MA|/3,
又因|AF|/|AM|=√3/2,所以|AB|=4/3|AF|=2√3/3|AM|,
∴|AD|/|AB|=√3/3,
设直线倾斜角是θ,即有cosθ=√3/3,
所以直线斜率k=tanθ=√2
椭圆C x^2/a^2+y^2/b^2=1 (a>b>0)的离心率为√3/2,过右焦点F且斜率为k k>0的直线交椭圆A
已知椭圆C:x*2/a*2+y*2/b*2=1(a>b>0)的离心率为√3/2,过右焦点F且斜率为k(k>0)的直线与
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为(√3)/2,过右焦点F且斜率为k(k>0)的直线
已知椭圆Cx^2/a^2+y^2/b^2=1,(a>b>0)离心率√3/2,过右焦点F,且斜率为K的直线与椭圆交于AB,
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为二分之根号三,过右焦点F且斜率为K(k>0)的直线
已知椭圆C:x^2/a^2+y^2/b^2=1(a>0,b>0)的离心率为根号3/2,过右焦点F且斜率为k(k>0)的直
已知椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的离心率为二分之根号3,过右焦点F且斜率为k(k>0
过椭圆C:x^2/6+y^2/2=1的右焦点F作斜率为k(k>0)的直线L与椭圆交于A.B两点.且坐标原点O到直线L的距
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,过右焦点F且斜率为k(k>0)的直线于C相交于A
过椭圆 C: x 2 6 + y 2 2 =1 的右焦点F作斜率为k(k>0)的直线l与椭圆交于A、B两点,且坐标原点O
已知椭圆C:x^2/a^2+y^2/b^2=1的离心率为√6/3,过右焦点F且斜率为1的直线交椭圆C
已知椭圆c:x2/a2+y2/b2=1的离心率为根号3/2,过右焦点f且斜率为k的直线与c交与A.B两点,若AF=3FB