作业帮 > 数学 > 作业

已知函数f(x)=lnx+ax^2+bx(a,b为常数且a不等于0)在x=1处取得极值.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:09:09
已知函数f(x)=lnx+ax^2+bx(a,b为常数且a不等于0)在x=1处取得极值.
若f(x)在(0,e]上的最大值为1,求a的值
已知函数f(x)=lnx+ax^2+bx(a,b为常数且a不等于0)在x=1处取得极值.
∵函数f(x)=lnx+ax^2+bx(a,b为常数且a不等于0)在x=1处取得极值.
显然f(x)连续且在从0开始时为递增函数
∴f '(x)=1/x+2ax+b,在x=1处值为0.即1+2a+b=0,∴b=-2a-1
∵f '(x)=1/x+2ax+b=1/x+2ax-2a-1=(x-1)(2a-1/x),注意定义域x>0
∴f(x)的极值(怀疑)点是x=1,x=1/(2a)[此时必须 a>0]
当x→0+时,f(x)→-∞,∴可适当取x0,使f(x)在(0,x0)递增且f(x0)