用三重积分计算立体Ω的体积
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 22:13:04
用三重积分计算立体Ω的体积
,其中Ω是由曲面z=根号(x^2+y^2)与z=1+根号(1-x^2-y^2)所围城的闭区间
,其中Ω是由曲面z=根号(x^2+y^2)与z=1+根号(1-x^2-y^2)所围城的闭区间
当被积函数ƒ(x,y,z) = 1时三重积分几何意义为立体Ω的体积.
————————————————————————————————
球面坐标:
所求体积 = ∫∫∫_Ω dV
= ∫(0→2π) dθ ∫(0→π/4) sinφdφ ∫(0→2cosφ) r²dr
= 2π∫(0→π/4) sinφdφ * [ r³/3 ] |(0→2cosφ)
= (2/3)π∫(0→π/4) 8cos³φ d(- cosφ)
= (- 16/3)π * (1/4)[ cos⁴φ ] |(0→π/4)
= (- 4/3)π * (1/4 - 1)
= π
————————————————————————————————
柱面坐标:Dz:z² = x² + y² => Dzの面积 = πz²
所求体积 = ∫∫∫_Ω dV
= ∫∫∫_Ω₁ dV + ∫∫∫_Ω₂ dV
= ∫(0→1) [∫∫_Dz dxdy] dz + ∫∫Dxy [∫(1→1 + √(1 - x² - y²)) dz] dxdy
= ∫(0→1) πz² dz + ∫(0→2π) dθ ∫(0→1) rdr ∫(1→1 + √(1 - r²) dz
= π/3 + 2π * ∫(0→1) r√(1 - r²) dr
= π/3 + 2π * (1/3)
= π
其中:Ω₁是由锥面z = √(x² + y²)和z = 1围成
Ω₂是由半球体z = 1 + √(1 - x² - y²)和z = 1围成
————————————————————————————————
球面坐标:
所求体积 = ∫∫∫_Ω dV
= ∫(0→2π) dθ ∫(0→π/4) sinφdφ ∫(0→2cosφ) r²dr
= 2π∫(0→π/4) sinφdφ * [ r³/3 ] |(0→2cosφ)
= (2/3)π∫(0→π/4) 8cos³φ d(- cosφ)
= (- 16/3)π * (1/4)[ cos⁴φ ] |(0→π/4)
= (- 4/3)π * (1/4 - 1)
= π
————————————————————————————————
柱面坐标:Dz:z² = x² + y² => Dzの面积 = πz²
所求体积 = ∫∫∫_Ω dV
= ∫∫∫_Ω₁ dV + ∫∫∫_Ω₂ dV
= ∫(0→1) [∫∫_Dz dxdy] dz + ∫∫Dxy [∫(1→1 + √(1 - x² - y²)) dz] dxdy
= ∫(0→1) πz² dz + ∫(0→2π) dθ ∫(0→1) rdr ∫(1→1 + √(1 - r²) dz
= π/3 + 2π * ∫(0→1) r√(1 - r²) dr
= π/3 + 2π * (1/3)
= π
其中:Ω₁是由锥面z = √(x² + y²)和z = 1围成
Ω₂是由半球体z = 1 + √(1 - x² - y²)和z = 1围成
用三重积分计算立体Ω的体积
利用三重积分计算下列曲面所围成的立体的体积
利用三重积分计算下列由曲面所围成的立体的体积
利用三重积分计算由曲面所围成的立体的体积
关于三重积分计算体积的问题.
三重积分计算体积的简单方法
用二重积分或三重积分计算曲面z=√x^2+y^2及z=x^2+y^2所围成的立体体积.
三重积分怎么计算体积?
三重积分用极坐标怎么计算球体体积
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=
利用三重积分计算由曲面z= √(x^2+y^2),z=x^2+y^2所围成的立体体积
三重积分计算由曲面Z=(X^2+Y^2)^0.5和曲面Z=(X^2+Y^2)所围成的立体体积的三次积分!写出积分表达式就