作业帮 > 数学 > 作业

已知向量满足|a|=1,|b|=2,且向量a在b方向上的投影等于向量b在a方向上的投影,则|a-b|=?请说明解题思路

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 05:10:32
已知向量满足|a|=1,|b|=2,且向量a在b方向上的投影等于向量b在a方向上的投影,则|a-b|=?请说明解题思路
已知向量满足|a|=1,|b|=2,且向量a在b方向上的投影等于向量b在a方向上的投影,则|a-b|=?请说明解题思路
令向量a、b的夹角为θ
则向量a在b方向上的投影为|a|cosθ
向量b在a方向上的投影为|b|cosθ
依题有|a|cosθ=|b|cosθ
而|a|≠|b|≠0
则cosθ=0
又θ∈[0°,180°]
则θ=90°
表明向量a、b相互垂直
利用向量三角形
易知a-b为直角三角形的斜边
由勾股定理易知
|a-b|=√(|a|^2+|b|^2)
=√(1^2+2^2)
=√5