作业帮 > 数学 > 作业

矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连FC(AB>AE)求证△AEF∽△ECF

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 15:12:31
矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连FC(AB>AE)求证△AEF∽△ECF
矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连FC(AB>AE)求证△AEF∽△ECF
证明:
取CF中点G,连接EG
∵E为AD的中点
∴EG是梯形AFCD的中位线
∴AF//EG
∴∠AFE =∠FEG
∵EF⊥EC
∴EG是Rt⊿CEF的斜边中线
∴EG=½CF=FG
∴∠FEG=∠EFB
∴∠AFE=∠EFC
∵四边形ABCD是矩形
∴∠A=90º
∴∠A=∠FEC
∴⊿AEF∽⊿ECF(AA’)