来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 11:21:19
同角三角函数的基本关系习题
已知2+1\tan^2θ=1+sinθ,求证:(1+sinθ)(2+cosθ)=4
证:
已知:2+1/(tanθ)^2=1+sinθ
对其变形、整理,有:
1+[(cosθ)^2]/(sinθ)^2=sinθ
(sinθ)^2+(cosθ)^2=(sinθ)^3
(sinθ)^3=1
解得:sinθ=1,因此:cosθ=0
将其代入所要证明的式子,有:
(1+sinθ)(2+cosθ)
=(1+1)(2+0)
=4
即:(1+sinθ)(2+cosθ)=4
证毕.