如图,在平面直角坐标系中,O为坐标原点.二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 10:18:29
如图,在平面直角坐标系中,O为坐标原点.二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
(1)求这个二次函数的解析式,并写出顶点B的坐标;
(2)如果点C的坐标为(4,0),AE⊥BC,垂足为点E,点D在直线AE上,DE=1,求点D的坐标.
(1)求这个二次函数的解析式,并写出顶点B的坐标;
(2)如果点C的坐标为(4,0),AE⊥BC,垂足为点E,点D在直线AE上,DE=1,求点D的坐标.
(1)∵二次函数y=-x2+bx+3的图象经过点A(-1,0),
∴0=-1-b+3,
解得:b=2,
所求二次函数的解析式为y=-x2+2x+3,
则这个二次函数图象顶点B的坐标为(1,4);
(2)过点B作BF⊥x轴,垂足为点F,
在Rt△BCF中,BF=4,CF=3,BC=5,
∴sin∠BCF=
4
5,
在Rt△ACE中,sin∠ACE=
AE
AC,
又∵AC=5,可得
AE
5=
4
5,
∴AE=4,
过点D作DH⊥x轴,垂足为点H.由题意知,点H在点A的右侧,
易证△ADH∽△ACE,
∴
AH
AE=
DH
CE=
AD
AC,
其中CE=3,AE=4,
设点D的坐标为(x,y),则AH=x+1,DH=y,
①若点D在AE的延长线上,则AD=5,
得
x+1
4=
y
3=
5
5,
∴x=3,y=3,
所以点D的坐标为(3,3);
②若点D在线段AE上,则AD=3.
得
x+1
4=
y
3=
3
5,
∴x=
7
5,y=
9
5,所以点D的坐标为(
7
5,
9
5).
综上所述,点D的坐标为(3,3)或(
7
5,
9
5).
∴0=-1-b+3,
解得:b=2,
所求二次函数的解析式为y=-x2+2x+3,
则这个二次函数图象顶点B的坐标为(1,4);
(2)过点B作BF⊥x轴,垂足为点F,
在Rt△BCF中,BF=4,CF=3,BC=5,
∴sin∠BCF=
4
5,
在Rt△ACE中,sin∠ACE=
AE
AC,
又∵AC=5,可得
AE
5=
4
5,
∴AE=4,
过点D作DH⊥x轴,垂足为点H.由题意知,点H在点A的右侧,
易证△ADH∽△ACE,
∴
AH
AE=
DH
CE=
AD
AC,
其中CE=3,AE=4,
设点D的坐标为(x,y),则AH=x+1,DH=y,
①若点D在AE的延长线上,则AD=5,
得
x+1
4=
y
3=
5
5,
∴x=3,y=3,
所以点D的坐标为(3,3);
②若点D在线段AE上,则AD=3.
得
x+1
4=
y
3=
3
5,
∴x=
7
5,y=
9
5,所以点D的坐标为(
7
5,
9
5).
综上所述,点D的坐标为(3,3)或(
7
5,
9
5).
如图,在平面直角坐标系中,O为坐标原点.二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
在平面直角坐标系中,O为坐标原点.二次函数y=-x²+bx+3的图象经过点A(-1,0),顶点为B.
在平面直角坐标系中,O为坐标原点,二次函数y=-x2+bx+3的图像经过点A(-1,0),顶点为B
如图,在平面直角坐标系xOy中,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
在平面直角坐标系中,O为坐标原点,二次函数y=-x^2+bx+3的图像经过点A(-1,0),顶点为B.
在平面直角坐标系中,O为坐标原点,二次函数Y=-X^2+bX+3的点经过点A(-1,0),定点为b
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0)
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3
在平面直角坐标系中二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0)
如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(3,0),B(-1,0),C(0,-3),顶点为D
在平面直角坐标系中,O为坐标原点,二次函数y=x^2+bx+c的图象与x轴相交于A,B两点,与y轴的负半轴交于点C(如图
(2007•威海)如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为