1.A= 第一行1 -1 -1 第二行0 -1 1 第三行0 0 -1 B= 第一行2 1 1 第二行0 1 2 且CA
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 11:09:30
1.A= 第一行1 -1 -1 第二行0 -1 1 第三行0 0 -1 B= 第一行2 1 1 第二行0 1 2 且CA-B=2C 求C (我算出来答案不对,难道是方法错了求过程) 2.假设n1,n2,n3是齐次线性方程组Ax=0的一基础解系,证明向量组n1+n2,n2+n3,n3+n1,也是Ax=0的一基础解系 (这个真不会证明) 神人请助我一臂之力吧
1.CA-B=2C,所以C(A-2E)=B,之后求出A-2E的逆矩阵,然后用B×(A-2E)^(-1)就是矩阵C. 2.首先证明向量组n1+n2,n2+n3,n3+n1是Ax=0的解, 这很明显,因为A(n1+n2)=0,A(n2+n3)=0,A(n3+n1)=0,所以向量组n1+n2,n2+n3,n3+n1是Ax=0的解. 接下来证明向量组n1+n2,n2+n3,n3+n1线性无关,用反证法, 假设向量组n1+n2,n2+n3,n3+n1线性相关,那么有k1(n1+n2)+k2(n2+n3)+k3(n3+n1)=0, 即(k1+k3)n1+(k1+k2)n2+(k2+k3)n3=0,因为n1,n2,n3是齐次线性方程组Ax=0的一基础解系, 所以有k1+k3=0,k1+k2=0,k2+k3=0,解得k1=k2=k3=0,所以n1+n2,n2+n3,n3+n1线性无关. 所以向量组n1+n2,n2+n3,n3+n1,也是Ax=0的一基础解系.
1.A= 第一行1 -1 -1 第二行0 -1 1 第三行0 0 -1 B= 第一行2 1 1 第二行0 1 2 且CA
设矩阵A=第一行1,2,2 第二行-1,-1,0 第三行1,3,5 B=第一行1,2 第二行-1,1 第三行 0,4 A
设矩阵A第一行-13 -6 -3第二行-4-2-1第三行2 1 1设矩阵B第一行1第二行0第三行-1求A-1.
设A=第一行[3 0 -1]第二行[1 4 1]第三行[1 0 3],求矩阵B,使得AB-2A=2B.
设A=第一行4 0 0 第二行 1 4 0 第三行 1 1 4 求矩阵B,使得AB-2A=3B
第一行1,第二行234,第三行,56789.
求矩阵a=第一行1 -1 0 第二行01-1第三行001的逆矩阵
关于矩阵的题目设A=【第一行1 5 3 4 第二行 0 -1 5 2 第三行2 3 1 0 】,B=【第一行0 2 1
矩阵A为3*3的 第一行5 -1 0 第二行-2 3 1第三行2 -1 6 矩阵B为3*2的 第一行2 1 第二行2 0
解矩阵方程 第一行1 1 -1 第二行0 2 2 第三行1 -1 0 X= 第一行 1 -2 第二行 0 1 第三行 -
设矩阵A=第一行1,0,1第二行 0,2,0第三行 0,0,1,求A^k(k=2,3,...)
求矩阵的逆矩阵第一行1,1,1第二行2,-1,1第三行1,2,0