如图,底面为菱形的四棱锥P-ABCD中,PA⊥平面ABCD,∠ABD=60°,E为PC上一动点,PA=AC=2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 01:47:05
如图,底面为菱形的四棱锥P-ABCD中,PA⊥平面ABCD,∠ABD=60°,E为PC上一动点,PA=AC=2
求证(1)BD⊥AE (2)若E为PC中点,求三棱锥E-PAD体积
没有图了..........
求证(1)BD⊥AE (2)若E为PC中点,求三棱锥E-PAD体积
没有图了..........
(1)∵PA⊥平面ABCD,∴PA⊥BD,
∵四边形ABCD是菱形,∴AC⊥BD,
又PA∩AC=C,∴BD⊥平面PAC,
∵点E在PC上,∴AE在平面PAC内,∴BD⊥AE.
(2)在Rt△PAC中,∵PA=AC=2,∴△PAC的面积=(1/2)×2×2=2,
∵E是PC的中点,∴△PAE的面积=1/2△PAC的面积=1,
设AC、BD交于O点,则AC、BD互相平分于O,∴AO=1/2AC=1,
在Rt△AOB中,∵∠ABO=60°,∴OB=AO/tan∠ABD=1/√3=√3/3,
故DO=√3/3,
由前面证明可知,DO⊥平面PAE,
∴三棱锥E-PAD的体积=三棱锥D-PAE的体积=(1/3)×△PAE的面积×DO=√3/9.
∵四边形ABCD是菱形,∴AC⊥BD,
又PA∩AC=C,∴BD⊥平面PAC,
∵点E在PC上,∴AE在平面PAC内,∴BD⊥AE.
(2)在Rt△PAC中,∵PA=AC=2,∴△PAC的面积=(1/2)×2×2=2,
∵E是PC的中点,∴△PAE的面积=1/2△PAC的面积=1,
设AC、BD交于O点,则AC、BD互相平分于O,∴AO=1/2AC=1,
在Rt△AOB中,∵∠ABO=60°,∴OB=AO/tan∠ABD=1/√3=√3/3,
故DO=√3/3,
由前面证明可知,DO⊥平面PAE,
∴三棱锥E-PAD的体积=三棱锥D-PAE的体积=(1/3)×△PAE的面积×DO=√3/9.
如图,底面为菱形的四棱锥P-ABCD中,PA⊥平面ABCD,∠ABD=60°,E为PC上一动点,PA=AC=2
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点
已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点
空间角已知,四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别为BC、PC的中点,
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,直线PC与底面ABC所成
如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC,PC的中点.
如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
如图,四棱锥P-ABCD的底面是边长为a的菱形,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA中点,
如图,四棱锥P-ABCD的底面ABCD是边长为4的菱形,角ABC=60°,PC⊥平面ABCD,PC=4,E为PA的中点,
如图,在底面是菱形的四棱锥P-ABCD中,∠BAD=60°,PA=PD,E为PC的中点.
如图,已知四棱锥P-ABCD的底面ABCD是菱形,PA垂直于平面ABCD PA=AD=AC,点F为PC的中点