22.(14分)过椭圆(x^2/9)+(y^2/4)=1 上任意一点P向圆x^2+y^2=1引切线PA、PB,切点分别为
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 07:18:37
22.(14分)过椭圆(x^2/9)+(y^2/4)=1 上任意一点P向圆x^2+y^2=1引切线PA、PB,切点分别为A、B、M为AB的中点,若P在椭圆上运动,求动点M的轨迹议程.
注:x^2表示x的二次方,y类似.
注:x^2表示x的二次方,y类似.
因为,根据已知得,PA垂直于AO,AM垂直PO,所以|MO|*|PO|=|OA|^2=1.令P为(X.,Y.),令M为(x,y).那么x^2+y^2=1/(X.^2+Y.^2),因p在椭圆(x^2/9)+(y^2/4)=1上,所以x^2+y^2=[(X.^2/9)+(Y.^2/4)]/(X.^2+Y.^2).因为OMP三点共线,所以原式变为x^2+y^2=[(x^2/9)+(y^2/4)]/(x^2+y^2),最终得M的轨迹方程为(x^2+y^2)^2=x^2/9+y^2/4
22.(14分)过椭圆(x^2/9)+(y^2/4)=1 上任意一点P向圆x^2+y^2=1引切线PA、PB,切点分别为
过椭圆C:x^2/8+y^2/4=1上的一点P(a,b)向圆O:x^2+y^2=4引两条切线PA、PB,A、B为切点,直
过椭圆C:x^2/8+y^/4=1上一点P(x0,y0)向圆O:x^2+y^2=4引两条切线PA、PB、A、B为切点,如
过椭圆C:x^2/8+y^2/4=1上一点P(x0,y0)向圆O:x^2+y^2=4引两条切线PA、PB,A、B为切点…
过椭圆C x^2/8+y^2/4=1上一点P(X0,Y0)向圆Ox^2+y^2=4引两条切线PA PB AB为切点 AB
已知圆o:X^2+Y^2=1,点p是椭圆c:x^2/4+Y^2=1上一点,过点p作圆o的两条切线PA,PB,A,B为切点
设p是直线l2x+y=0上的任意一点,过点p作圆x^2|+y^2=9的两条切线pa,pb切点分别为ab,则直线ab恒过定
过椭圆x^2+y^2=1(a>b>0)上的动点P到圆O:x^2+y^2=b^2的两条切线为PA、PB,切点分别为A、B
已知曲线x^2=4y,P为直线y=-1上任意一点,PA,PB为该曲线的两条切线,A,B为切点,则向量PA*向量PB=
过椭圆C:x^2/8+y^/4=1上一点P(x0,y0)向圆O:x^2+y^2=4引两条切线PA、PB、A、B
椭圆C,x^2/8+y^2/4=1上一点P(x0,y0)向圆O,x^2+y^2=4引两条切线PA,PB,A,B为切线,
已知圆O:x2+y2=1,圆C:(x-2)2+(y-4)2=1.在两圆外一点P(a,b)引两圆切线PA、PB,切点分别为