设f(x)=x^2+bx+c(b,c∈R).若x的绝对值≥2时,f(x)≥0,且 f(x)在区间(2,3]上的最大值为1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:10:33
设f(x)=x^2+bx+c(b,c∈R).若x的绝对值≥2时,f(x)≥0,且 f(x)在区间(2,3]上的最大值为1 (1)求 f(3)的值
设f(x)=x^2+bx+c(b,c∈R).若x的绝对值≥2时,f(x)≥0,且 f(x)在区间(2,3]上的最大值为1
(1)求 f(3)的值
(2)若 f(x)=x^2+bx+c不存在零点,求b的范围并求b^2+c^2的最大值
(3)若 f(x)=x^2+bx+c存在零点,求b的值
设f(x)=x^2+bx+c(b,c∈R).若x的绝对值≥2时,f(x)≥0,且 f(x)在区间(2,3]上的最大值为1
(1)求 f(3)的值
(2)若 f(x)=x^2+bx+c不存在零点,求b的范围并求b^2+c^2的最大值
(3)若 f(x)=x^2+bx+c存在零点,求b的值
(1)抛物线函数f(x)=x^2+bx+c开口向上,离开中心对称轴越远函数值越大,因此当|x|≥2若f(x)≥0,那么区间(2,3]上函数最大值即f(3),所以f(3)=1;
(2)f(x)=x^2+bx+c不存在零点,则b^2-4c
(2)f(x)=x^2+bx+c不存在零点,则b^2-4c
设f(x)=x^2+bx+c(b,c∈R).若x的绝对值≥2时,f(x)≥0,且 f(x)在区间(2,3]上的最大值为1
设f(x)=x^2+bx+c(b,c属于R),若|x|≥2时f(x)≥0,且f(x)在区间(2,3]上的最大值为1,求b
设f(x)=x^2+bx+c(b,c属于R),若|x|≥2时f(x)≥0,且f(x)在区间(2,3]上的最大值为1,
设f(x)=x^2+bx+c(b,c属于实数),若x的绝对值大于等于2时,f(x)大于等于0,且f(x)在区间(2,3]
设f(x)=ax^2+bx+c(a,b,c属于R,a≠0),f(x)在区间[-2,2]上的最大值,最小值分别为M,m,集
已知函数f(x)=x^2+bx+c,且f(1)=0.1.若b=0,求函数f(x)在区间[-1,3]上的最大值和最小值 2
若f(x)=x²+bx+c,且f(1)=0,f(3)=0.求b、c的值;试证明函数f(x)在区间(2,+∞)上
设f(x)为定义域在R上的奇函数,且f(-x)+f(x+3)=0,若f(-1)=-1,且f(2)<
设二次函数f(x)=ax^2+bx+c(a、b、c为常数)的导函数为f'(x),对任意X∈R,不等式f(x)≥f'(x)
在区间[1/2,2]上函数f(x)=x²+bx+c(b,c∈R)
已知函数f(x)的定义域为R,且f(-x)=1/f(x) >0,若g(x)=f(x)+c(c为常数)在区间[a,b]上单
已知函数f(x)的定义域为R,且f(负x)=f(x)分之1大于0,若g(x)=f(x)加c(c为常数)在区间[a,b]上