1、正方形ABCD的边长为16√2,对角线AC、BD相交于点O,过O作OD1⊥AB于D1,过D1作D1D2⊥BD于点D2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 17:15:36
1、正方形ABCD的边长为16√2,对角线AC、BD相交于点O,过O作OD1⊥AB于D1,过D1作D1D2⊥BD于点D2,过D2作D2D3⊥AB于D3.,依次类推,其中的OD1+D2D3+D4D5+D6D7=——cm
2、把一把三角尺放在长为√3,宽为1的矩形ABCD上,并在它的直角顶点P在对角线上滑动,直角的一边始终经过点B,另一边与DC的延长线相交于Q,
(1)当点Q在边上DC上时,线段PQ与线段PB之间又怎样的大小关系?试证明你观察到的结论.
(2)当点Q在边DC的延长线上时,(1)的结论还成立吗?简述理由.
(3)当点P在线段AC上滑动时,△PBC成为等腰三角形?如果可能,指出所有能在△PBC成为等腰三角形的Q的位置.如果不可能,试说明理由.
2、把一把三角尺放在长为√3,宽为1的矩形ABCD上,并在它的直角顶点P在对角线上滑动,直角的一边始终经过点B,另一边与DC的延长线相交于Q,
(1)当点Q在边上DC上时,线段PQ与线段PB之间又怎样的大小关系?试证明你观察到的结论.
(2)当点Q在边DC的延长线上时,(1)的结论还成立吗?简述理由.
(3)当点P在线段AC上滑动时,△PBC成为等腰三角形?如果可能,指出所有能在△PBC成为等腰三角形的Q的位置.如果不可能,试说明理由.
(1)15√2
步骤:根据题意可得
AD=CD=BC=AB
因为AC、BD是正方形的对角线
所以对角线互相平分
OA=OB=OC=OD
根据勾股定理
AC^2=CD^2+AD^2=(16√2)^2+(16√2)^2=1024
所以AC=BD=32
OA=OB=OC=OD=32/2=16
因为OD1⊥AB
所以AOD1=BOD1=8√2
所以OD1^2=16^2-(8√2)^2=128
OD1=8√2
根据相同的方法可得
后面的每条边都是前一条的1/2
OD1+D2D3+D4D5+D6D7=15√2cm
2.(1)
因为∠BPQ为直角,
所以∠EPB+∠FPQ=90度
因为∠EPB+∠EBP=90度
所以∠EPB=∠FPQ,又因为∠PEB=∠PFQ=90度,
所以,△PEB相似于△QFP
所以PQ/PB=PF/EB
因为EB=FC,所以PQ/PB=PF/FC
因为,△CFP相似于△CDA,所以PF/FC=AD/DC=根号3/1
所以PQ/PB=根号3/1
后面2问难打了到此为止吧!
步骤:根据题意可得
AD=CD=BC=AB
因为AC、BD是正方形的对角线
所以对角线互相平分
OA=OB=OC=OD
根据勾股定理
AC^2=CD^2+AD^2=(16√2)^2+(16√2)^2=1024
所以AC=BD=32
OA=OB=OC=OD=32/2=16
因为OD1⊥AB
所以AOD1=BOD1=8√2
所以OD1^2=16^2-(8√2)^2=128
OD1=8√2
根据相同的方法可得
后面的每条边都是前一条的1/2
OD1+D2D3+D4D5+D6D7=15√2cm
2.(1)
因为∠BPQ为直角,
所以∠EPB+∠FPQ=90度
因为∠EPB+∠EBP=90度
所以∠EPB=∠FPQ,又因为∠PEB=∠PFQ=90度,
所以,△PEB相似于△QFP
所以PQ/PB=PF/EB
因为EB=FC,所以PQ/PB=PF/FC
因为,△CFP相似于△CDA,所以PF/FC=AD/DC=根号3/1
所以PQ/PB=根号3/1
后面2问难打了到此为止吧!
1、正方形ABCD的边长为16√2,对角线AC、BD相交于点O,过O作OD1⊥AB于D1,过D1作D1D2⊥BD于点D2
已知正方形ABCD的边长为根号2两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的
已知正方形ABCD的边长为a,两条对角线AC BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC BD 的垂线
已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线P
如图1 正方形ABCD的对角线AC BD 相交于点O E是AC上一点,过点A作AG⊥EB 垂足为G AG交BD于F 求证
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O作MN⊥BD,分别交AD,BC于点M,N
初三旋转问题如图,正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为点G,AG交BD
如图所示,在矩形abcd中,ab等于√2,bc等于2,对角线ac、bd相交于点o,过点o作oe⊥ac交ad于点e,则ae
如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,
△ABC是一个边长为2的等边三角形AD0⊥BC垂足为点D0,过点D0作D0D1垂直于AB,再过D1作D1D2垂直于AD0
如图在矩形ABCD中 对角线AC BD相交于点O,过点O作OE⊥BC,垂足为E,连接DE交AC于点P,过P作PF⊥BC,
在矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BC,垂足为E,连接DE交AC于点P,过P作PF⊥BC,垂足