作业帮 > 数学 > 作业

由曲线y=根号x和直线x+y=2及x轴所围图形 求(1)该图形面积 (2)该图形绕X轴旋转所得的旋转体体积

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 14:09:31
由曲线y=根号x和直线x+y=2及x轴所围图形 求(1)该图形面积 (2)该图形绕X轴旋转所得的旋转体体积
由曲线y=根号x和直线x+y=2及x轴所围图形 求(1)该图形面积 (2)该图形绕X轴旋转所得的旋转体体积
y = √x
y = 2 - x
√x = 2 - x
平方:x² - 5x + 4 = 0
(x - 4)(x - 1) = 0
x = 1, y = 1, 交点A(1, 1)
x = 4, y = -2 (舍去)
y = 2 - x和x轴的交点为B(2, 0)
(1)
S =∫₀¹√xdx +∫₁²(2-x)dx
= (2/3)x^(3/2)|₀¹ + (2x - x²/2)|₁²
= 2/3 + 1/2
= 7/6

(2)

该旋转体在x处的截面积:
(i) 0 < x < 1:
s =π(√x)² = πx
这部分体积V1 = ∫₀¹πxdx = π*x²/2|₀¹  = π/2

(ii) 1 < x < 2:
s = π(2 - x)² = π(4 - 4x + x²)
这部分体积V2 = ∫₁²π(4 - 4x + x²)dx = π(4x - 2x² + x³/3)|₁²
= π/3
V = V1 + V2 =  π/2 +  π/3 = 5π/6

由曲线y=根号x和直线x+y=2及x轴所围图形 求(1)该图形面积 (2)该图形绕X轴旋转所得的旋转体体积 求由直线y=0,x=0,x=1和曲线y=x^3+1所围成的平面图形的面积及该图形x轴旋转一周所得旋转体的体积. 求(1)由曲线y= 、直线y=x和x=2所围成的平面图形的面积.(2)该图形绕x轴旋转一周而成的旋转体的体积 由抛物线根号y=x,直线y=2-x及x轴所围成平面图形的面积 以及该图形绕y轴旋转一周所得旋转体的体积 求由抛物线y=1+x^2,x=0,x=1及y=0所围成的平面图形的面积,并求该图形绕x轴旋转一周所得旋转体体积. 高数旋转体体积、求由y=x/1 y=x ,及x轴所围的平面图形的面积,及该平面图形绕轴旋转一周所得旋转体体积 求由曲线y=x的平方2,x=y的平方2所围成的平面图形的面积S,以及该平面图形绕x轴旋转转一周所得旋转体体积V 微积分求面积和体积求曲线 ,y=x^2 x=y^2 所围成的平面图形的面积及该图形绕x轴旋转所成的旋转体的体积.我只会算 求曲线y等于根号下x与y=x-2,y=0所围成图形的面积s及该图形绕x轴旋转而成的旋转体的体积v 求曲线y=x^2,直线x=2和x轴所围成的图形绕直线y=-1旋转所得旋转体的面积? 由抛物线x=y和x=2-y围成的一平面图形,求该平面图形的面积;求由该平面图形绕y轴旋转所得旋转体的体积 求曲线1/y,y=x^2和直线x=2所围成的图形的面积以及该图形绕y轴旋转形成旋转体体积