已知抛物线y²sup2;=4x的焦点为F,直线l过M(4,0) 1、若点F到直线l的距离为√3,求直线l的斜率
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 19:16:04
已知抛物线y²sup2;=4x的焦点为F,直线l过M(4,0) 1、若点F到直线l的距离为√3,求直线l的斜率
2、设A、B为抛物线上的两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点横坐标为定值.
2、设A、B为抛物线上的两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点横坐标为定值.
1.y^2=4x,p=2,则有焦点坐标是F(1,0)
设直线L的方程是y=k(x-4)
那么有:|k(1-4)-0|/根号(1+k^2)=根号3
|3K|=根号3*根号(1+K^2)
3K^2=1+K^2
K^2=1/2
K=(+/-)根号2/2.
2.
设抛物线y^2=4x的两点A(x1 ,y1) B(x2,y2)
线段AB的垂直平分线恰过点M
再根据垂直平分线上的点到两端点的距离相等得
(4-x1)^2 +(y1)^2 =(4-x2)^2 +(y2)^2 (他们距离的平方是相等的,这里用点到点的距离的公式) 由题知(y1)^2 =4x1 (y2)^2=4x2
代入并展开得
16+(x1)^2 -8x1 +4x1=(x2)^2 -8x2 +16 +4x2
即(x1)^2 -(x2)^2 =4x1-4x2
即(x1-x2)(x1+x2)=4(x1-x2)
即x1+x2=4
线段AB中点的横坐标为(x1+x2)/2=2
所以是定值
设直线L的方程是y=k(x-4)
那么有:|k(1-4)-0|/根号(1+k^2)=根号3
|3K|=根号3*根号(1+K^2)
3K^2=1+K^2
K^2=1/2
K=(+/-)根号2/2.
2.
设抛物线y^2=4x的两点A(x1 ,y1) B(x2,y2)
线段AB的垂直平分线恰过点M
再根据垂直平分线上的点到两端点的距离相等得
(4-x1)^2 +(y1)^2 =(4-x2)^2 +(y2)^2 (他们距离的平方是相等的,这里用点到点的距离的公式) 由题知(y1)^2 =4x1 (y2)^2=4x2
代入并展开得
16+(x1)^2 -8x1 +4x1=(x2)^2 -8x2 +16 +4x2
即(x1)^2 -(x2)^2 =4x1-4x2
即(x1-x2)(x1+x2)=4(x1-x2)
即x1+x2=4
线段AB中点的横坐标为(x1+x2)/2=2
所以是定值
已知抛物线y²sup2;=4x的焦点为F,直线l过M(4,0) 1、若点F到直线l的距离为√3,求直线l的斜率
已知抛物线y^2=4x的焦点为F,直线l过点M(4,0).若点F到直线l的距离为√3,求直线l的斜率为
已知抛物线y2次方=4x的焦点为F;若直线l过点M(4,0)且点F到直线l的距离为2,求直线l的方程
抛物线y^2=4x,直线l过M(4.0)若F到l的距离为根号3,求l的斜率如题
已知抛物线C:y²=4x的准线与x轴交于m点,F为抛物线焦点,过点M斜率为k的直线l与抛物线交于点A.B
已知抛物线C:y²=4x的准线与x轴交于m点,F为抛物线焦点,过点M斜率为k的直线l与抛物线交于点A.B两点
设抛物线y²=4x的焦点为F,准线为l,经过F且斜率为√3的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,
抛物线C:y^2=4x,F是C的焦点,过点F且斜率为1的直线l交抛物线于A、B两点
已知抛物线y²=4x焦点为F过F的直线l与抛物线相交于A、B两点若l的法向量n=(1,-1)求直线l的方程
已知抛物线y^2=4x,直线L的斜率为1,且过抛物线的焦点,求直线L的方程
已知抛物线C:y^2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(1)设l的斜率为1,求向量OA和向量OB
已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的.