作业帮 > 数学 > 作业

1、在数列{an}中,a1=1.a(n+1)=3an+2n+1.求an.2、在数列{an}中,a1=-1,a(n+1)=

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 04:00:09
1、在数列{an}中,a1=1.a(n+1)=3an+2n+1.求an.2、在数列{an}中,a1=-1,a(n+1)=(3an-4)/[(an)-1].求an.
1、在数列{an}中,a1=1.a(n+1)=3an+2n+1.求an.2、在数列{an}中,a1=-1,a(n+1)=
a(n+1)=3a(n)+2n+1=3a(n)+3n-(n+1)+2=3a(n)+3n-(n+1)+3-1,
a(n+1)+(n+1)+1=3[a(n)+n+1],
{a(n)+n+1}是首项为a(1)+1+1=3,公比为3的等比数列.
a(n)+n+1=3*3^(n-1)=3^n.
a(n)=3^n - n - 1.
2,
a(n+1)=[3a(n)-4]/[a(n)-1],
a(n+1)-2=[3a(n)-4]/[a(n)-1]-2=[3a(n)-4-2a(n)+2]/[a(n)-1]=[a(n)-2]/[a(n)-1],
若a(n+1)=2,则a(n)=2,...,a(1)=2,与a(1)=-1矛盾,因此,a(n)不为2.
1/[a(n+1)-2] = [a(n)-1]/[a(n)-2]=[a(n)-2+1]/[a(n)-2] = 1/[a(n)-2] + 1
{1/[a(n)-2]}是首项为1/[a(1)-2]=1/[-1-2]=-1/3,公差为1的等差数列.
1/[a(n)-2] = -1/3 + (n-1) = (3n-4)/3,
a(n)-2=3/(3n-4),
a(n)=2+3/(3n-4)=(6n-8+3)/(3n-4)=(6n-5)/(3n-4)