若(b^2+c^2-a^2)/(2bc)+(c^2+a^2-b^2)/(2ca)+(a^2+b^2-c^2)/(2ab)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 07:03:38
若(b^2+c^2-a^2)/(2bc)+(c^2+a^2-b^2)/(2ca)+(a^2+b^2-c^2)/(2ab)=1,求证:见问题补充
求证:[(b^2+c^2-a^2)/(2bc)]^2009+[(c^2+a^2-b^2)/(2ca)]^2009+[(a^2+b^2-c^2)/(2ab)]^2009=1
求证:[(b^2+c^2-a^2)/(2bc)]^2009+[(c^2+a^2-b^2)/(2ca)]^2009+[(a^2+b^2-c^2)/(2ab)]^2009=1
证明:
(a^2+b^2-c^2)/2ab+(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ac=1,
c(a^2+b^2-c^2)+a(b^2+c^2-a^2)+b(a^2+c^2-b^2)=2abc,
c(a^2+b^2-c^2)+2abc+a(b^2+c^2-a^2)-2abc+b(a^2+c^2-b^2)-2abc=0
c(a^2+2ab+b^2-c^2)+a(b^2-2ab+c^2-a^2)+b(a^2-2ab+c^2-b^2)=0
整理并因式分解得(a+b-c)(a-b+c)(b+c-a)=0,
即上面三式中至少有一个为0,
不妨设a+b-c=0,即a+b=c,则
(b^2+c^2-a^2)/(2bc)=1,(c^2+a^2-b^2)/(2ca)=1,(a^2+b^2-c^2)/(2ab)=-1
故等式左边=1^2009+1^2009+(-1)^2009
=1+1-1=1=右边
同理,假设a-b+c=0 或 b+c-a=0
可证明左边=右边
证毕
(a^2+b^2-c^2)/2ab+(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ac=1,
c(a^2+b^2-c^2)+a(b^2+c^2-a^2)+b(a^2+c^2-b^2)=2abc,
c(a^2+b^2-c^2)+2abc+a(b^2+c^2-a^2)-2abc+b(a^2+c^2-b^2)-2abc=0
c(a^2+2ab+b^2-c^2)+a(b^2-2ab+c^2-a^2)+b(a^2-2ab+c^2-b^2)=0
整理并因式分解得(a+b-c)(a-b+c)(b+c-a)=0,
即上面三式中至少有一个为0,
不妨设a+b-c=0,即a+b=c,则
(b^2+c^2-a^2)/(2bc)=1,(c^2+a^2-b^2)/(2ca)=1,(a^2+b^2-c^2)/(2ab)=-1
故等式左边=1^2009+1^2009+(-1)^2009
=1+1-1=1=右边
同理,假设a-b+c=0 或 b+c-a=0
可证明左边=右边
证毕
若a>b>c,求证a^2b+b^2c+c^2a>ab^2+bc^2+ca^2
(a)因式分解行列式 |bc a a^2| |ca b b^2| |ab c c^2|
a>b>c,bc^2+ca^2+ab^2
a>b>c证明a^2b+b^2c+c^2a>ab^2+bc^2+ca^2
a>b>c,证a^2b+b^2c+c^2a>ab^2+bc^2+ca^2
已知a>b>c,求证a^2b+b^2c+c^2a>ab^2+bc^2+ca^2
a,b,c为任意实数,求证a^2+b^2+c^2>ab+bc+ca
计算(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
(1)式子a/bc+b/ca+c/ab的值能否为0?为什么?(2)式子a-b|(b-c)(c-a)+b-c|(a-b)(
已知a,b,c∈R+,求证:ab+bc+ca=3abc.求证ab/a+b + bc/b+c + ca/c+a≥3/2 急
已知a+b+c=0,且a、b、c互不相等.求证:a^/2a^+bc+b^/2b^+ca+c^/2c^+ab=1.
已知a×a+b×b=1,b×b+c×c=2,c×c+a×a=2,求ab+bc+ca的最小值是多少?