来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 10:45:23
求导数(lnx)^2的原函数
答:
∫(lnx)^2dx=x(lnx)^2-∫x*d((lnx)^2)
=x(lnx)^2-∫x*2lnx/xdx
=x(lnx)^2-2∫lnxdx
=x(lnx)^2-2x*lnx+2∫xd(lnx)
=x(lnx)^2-2x*lnx+2∫d(x)
=x(lnx)^2-2x*lnx+2x+C(C为任意实数)
故(lnx)^2的原函数为x(lnx)^2-2x*lnx+2x+C(C为任意实数).