设f(X)连续且满足 f(x)=e^x+sinx- ∫ x 0 (x-t)f(t)dt,并求该函数f(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:50:06
设f(X)连续且满足 f(x)=e^x+sinx- ∫ x 0 (x-t)f(t)dt,并求该函数f(x)
RT
RT
f(x)=e^x + sinx - ∫[0→x] (x-t)f(t) dt
=e^x + sinx - x∫[0→x] f(t) dt + ∫[0→x] tf(t) dt
求导得:
f '(x)=e^x+cosx-∫[0→x] f(t) dt-xf(x)+xf(x)
=e^x+cosx-∫[0→x] f(t) dt (1)
两边再求导得:
f ''(x)=e^x-sinx-f(x)
得微分方程:f ''(x)+f(x)=e^x-sinx
将x=0代入原方程得:f(0)=1
将x=0代入(1)得:f '(0)=2
下面求解初值问题:
f ''(x)+f(x)=e^x-sinx
f(0)=1
f '(0)=2
特征方程:λ²+1=0,解得λ=±i
齐次方程通解为:C1cosx+C2sinx
构造非齐次方程特解为:y*=ae^x+bx*cosx+cx*sinx
代入微分方程比较系数得特解为:y*=(1/2)e^x+(1/2)xcosx
非齐次方程通解为:f(x)=C1cosx+C2sinx+(1/2)e^x+(1/2)xcosx
将两个初始条件代入得:C1=1/2,C2=1
因此本题结果为:f(x)=(1/2)cosx+sinx+(1/2)e^x+(1/2)xcosx
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
=e^x + sinx - x∫[0→x] f(t) dt + ∫[0→x] tf(t) dt
求导得:
f '(x)=e^x+cosx-∫[0→x] f(t) dt-xf(x)+xf(x)
=e^x+cosx-∫[0→x] f(t) dt (1)
两边再求导得:
f ''(x)=e^x-sinx-f(x)
得微分方程:f ''(x)+f(x)=e^x-sinx
将x=0代入原方程得:f(0)=1
将x=0代入(1)得:f '(0)=2
下面求解初值问题:
f ''(x)+f(x)=e^x-sinx
f(0)=1
f '(0)=2
特征方程:λ²+1=0,解得λ=±i
齐次方程通解为:C1cosx+C2sinx
构造非齐次方程特解为:y*=ae^x+bx*cosx+cx*sinx
代入微分方程比较系数得特解为:y*=(1/2)e^x+(1/2)xcosx
非齐次方程通解为:f(x)=C1cosx+C2sinx+(1/2)e^x+(1/2)xcosx
将两个初始条件代入得:C1=1/2,C2=1
因此本题结果为:f(x)=(1/2)cosx+sinx+(1/2)e^x+(1/2)xcosx
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
设f(X)连续且满足 f(x)=e^x+sinx- ∫ x 0 (x-t)f(t)dt,并求该函数f(x)
设f(x)连续,且满足f(x)=e^x+∫x上0下(t-x)f(t)dt 求f(x)
设f(x)连续,且满足f(x)=e^x+∫(0,x)tf(x-t)dt,求f(x)
设当x>0时,函数f(x)连续且满足f(x)=x+∫(1,x)1/xf(t)dt,求f(x)
设函数f(x)具有连续的导数且满足方程,∫(0-x)(x-t+1)f'(t)dt=x^2+e^x-f(x),求f(x)
设函数f(x)可导,且满足f(x)-∫(上限为x,下限为0)f(t)dt=e^x,求f(x) 需要详解,
设连续函数f(x)满足f(x)=e^x-∫(0,x)f(t)dt,求f(x)
设f(x)具有连续导数,且满足f(x)=x+∫(上x下0)tf'(x-t)dt求lim(x->-∞)f(x)
设f(x)为连续函数,且符合关系f(x)=e^x-∫(0,x)(x-t)f(t)dt,求函数f(x)
设函数F(X)具有二阶连续导数,且满足F(X)=[微分(上限X下限0)F(1-t)dt]+1,求F(X)
8、设f(x)为可导函数,且满足∫0到x f(t)t^2 dt=f(x)+3x 求f(x)
f(x)连续且满足f(x)=sinx+(e^x)-∫(上x 下0)(x-t)f(t)dt求f(x) 主要是两边求导不会求