已知椭圆x2/a2+y2/b2=1右顶点与右焦点距离为√3-1,短轴长为2√2(1)求椭圆方程
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 06:59:50
已知椭圆x2/a2+y2/b2=1右顶点与右焦点距离为√3-1,短轴长为2√2(1)求椭圆方程
已知焦点在x轴上的椭圆,右顶点与右焦点的距离为(根3-1),短轴长(2倍根2)
1,求椭圆方程
2,过左焦点F的值线与椭圆交于A,B两点,若S三角'形ABc=(4分之3倍根2)求lAB方程
已知焦点在x轴上的椭圆,右顶点与右焦点的距离为(根3-1),短轴长(2倍根2)
1,求椭圆方程
2,过左焦点F的值线与椭圆交于A,B两点,若S三角'形ABc=(4分之3倍根2)求lAB方程
(1)a-c=√3-1,b=√2
∴ a=√3,c=1
∴ 方程为x²/3+y²/2=1
(2)左焦点F(-1,0)
设直线 y=k(x+1)
代入椭圆
2x²+3k²(x+1)²-6=0
(2+3k²)x²+6k²x+3k²-6=0
∴ △=(6k²)²-4(2+3k²)(3k²-6)=-4(-12k²-12)=48(k²+1)
∴ |x1-x2|=4√3 √(k²+1)/ (2+3k²)
∴ |y1-y2|=|k|*4√3√(k²+1)/ (2+3k²)
∴ S=(1/2)*1*|y1-y2|=2√3|k|*√(k²+1)/ (2+3k²)=3√2/4
解得k²=2
∴ 直线是y=√2(x+1)或k=-√2(x+1)
∴ a=√3,c=1
∴ 方程为x²/3+y²/2=1
(2)左焦点F(-1,0)
设直线 y=k(x+1)
代入椭圆
2x²+3k²(x+1)²-6=0
(2+3k²)x²+6k²x+3k²-6=0
∴ △=(6k²)²-4(2+3k²)(3k²-6)=-4(-12k²-12)=48(k²+1)
∴ |x1-x2|=4√3 √(k²+1)/ (2+3k²)
∴ |y1-y2|=|k|*4√3√(k²+1)/ (2+3k²)
∴ S=(1/2)*1*|y1-y2|=2√3|k|*√(k²+1)/ (2+3k²)=3√2/4
解得k²=2
∴ 直线是y=√2(x+1)或k=-√2(x+1)
已知椭圆x2/a2+y2/b2=1右顶点与右焦点距离为√3-1,短轴长为2√2(1)求椭圆方程
已知椭圆x2/a2+y2/b2=1(a>b>0)经过点A(2,3),焦距为4,M为右顶点,过右焦点F的直线l与椭圆于A,
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,点F为椭圆的右焦点,点A、B分别为椭圆的左右顶点
已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,右焦点到直线x+y+√6=0
已知椭圆x2/a2+y2/b2=1(a>b>0)的右焦点为F2(3,0)离心率为e 若e=根号3/2,求椭圆方程
已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F(-根号2,0),点F到右顶点的距离为根号3+根号2,(一)
已知椭圆C:x2/a2+y2/b2 1 的离心率为6/3,短轴的一个端点到右焦点的距离为3.求椭圆C的方程 ·
已知椭圆x2/a2+y2/b2=1上存在一点M,它到左焦点的距离是它到右准线距离的3/2倍,则椭圆离心率的最小值为多少
已知椭圆C:X2/a2 Y2/b2=1(a>b>0)的短轴长2根号3,右焦点F与抛物线y2=4x的
已知椭圆C;x2/a2+y2/b2=1(a>b>0)的右焦点为F(1,0),且点(-1,根号2/2)在椭圆上,
已知椭圆x2/a2+y2/b2=1(a>b>0)的右焦点为F2(3,0)离心率为e 若e=根号3/2,椭圆方程为x
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,直线l1经过椭圆的上顶点A和右顶点B,并且和圆x