初二数学题:关于矩形,全等三角形的问题
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 13:41:32
老师,请教这道题。
解题思路: 由题意得BC=BE,再根据矩形的性质得∠A=90°,AE∥BC,则∠AEB=∠FBC,而CF丄BE,则∠BFC=90°,根据直角三角形全等的判定易得到Rt△ABE≌Rt△CFB,利用三角形全等的性质即可得到AE=BF
解题过程:
解:BF=AE.理由如下:
∵以点B为圆心、BC长为半径画弧,交AD边于点E,
∴BC=BE,
∵四边形ABCD为矩形,
∴∠A=90°,AE∥BC,
∴∠AEB=∠FBC,
而CF丄BE,
∴∠BFC=90°,
在Rt△ABE和Rt△CFB中,
BE=BC
∠AEB=∠FBC,
∴Rt△ABE≌Rt△CFB,
∴AE=BF.
解题过程:
解:BF=AE.理由如下:
∵以点B为圆心、BC长为半径画弧,交AD边于点E,
∴BC=BE,
∵四边形ABCD为矩形,
∴∠A=90°,AE∥BC,
∴∠AEB=∠FBC,
而CF丄BE,
∴∠BFC=90°,
在Rt△ABE和Rt△CFB中,
BE=BC
∠AEB=∠FBC,
∴Rt△ABE≌Rt△CFB,
∴AE=BF.