作业帮 > 数学 > 作业

如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PCD.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:35:33
如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PCD.
如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PCD.
取PD、PC中点E、F,连AE、EF、FM
则EFG为△PCD的中位线
∴EF∥CD∥AB,即EF∥AM
EF=CD/2=AB/2=AM
∴AEFM是平行四边形
∴AE∥MF
∵PA⊥平面ABCD
∴PA⊥CD
∵ABCD是矩形
∴CD⊥AD
∴CD⊥平面PAD
∴CD⊥AE
∵PA=AD,PE=DE
∴AE⊥PD
∴AE⊥平面PCD
又AE∥MF
∴MF⊥平面PCD
∴平面PMC⊥平面PCD
(省略了少量步骤,请LZ完善)
再问: 你好,你答得非常好, 请问我要完善什么步骤呢? 我感觉步骤很齐全啊。。
再答: 譬如MF∈平面PMC