如图,二次函数y=ax2+bx+c的图像与x轴交与A,B两点,其中点A的坐标为(2,0),与y轴交点为D(0,4),抛物
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 03:56:06
如图,二次函数y=ax2+bx+c的图像与x轴交与A,B两点,其中点A的坐标为(2,0),与y轴交点为D(0,4),抛物线的对称轴为x=3
1.确定函数解析式
2.求出抛物线的顶点C的坐标
3.在抛物线上求一点P,使得三角形PAB面积为2
图
1.确定函数解析式
2.求出抛物线的顶点C的坐标
3.在抛物线上求一点P,使得三角形PAB面积为2
图
1.∵对称轴为x=3,∴A、B关于x=3对称,
∵A(2,0),∴B(4,0)
∵A、B、D在抛物线上,将它们的坐标代入函数解析式得
4a+2b+c=0 ①
16a+4b+c=0 ②
c=4 ③
解得 a=1/2,b=-3,c=4
∴函数的解析式为 y=(1/2)x²-3x+4
2.把x=3代入解析式得 y=(1/2)·3²-3·3+4=-1/2
∴ C(3,-1/2)
3.∵|AB|=4-2=2
为使△PAB的面积为2,其高h应等于2
把y=2代入函数解析式得
(1/2)x²-3x+4=2
解得 x=3±√5
∴有两个P1(3+√5,2),P2(3-√5,2)
∵A(2,0),∴B(4,0)
∵A、B、D在抛物线上,将它们的坐标代入函数解析式得
4a+2b+c=0 ①
16a+4b+c=0 ②
c=4 ③
解得 a=1/2,b=-3,c=4
∴函数的解析式为 y=(1/2)x²-3x+4
2.把x=3代入解析式得 y=(1/2)·3²-3·3+4=-1/2
∴ C(3,-1/2)
3.∵|AB|=4-2=2
为使△PAB的面积为2,其高h应等于2
把y=2代入函数解析式得
(1/2)x²-3x+4=2
解得 x=3±√5
∴有两个P1(3+√5,2),P2(3-√5,2)
如图,二次函数y=ax2+bx+c的图像与x轴交与A,B两点,其中点A的坐标为(2,0),与y轴交点为D(0,4),抛物
如图,二次函数y=ax2+bx+c的图像与x轴交与A、B两点,其中中A点坐标为(-1,0)点C(0,5)
已知二次函数Y=ax^2+bx+c(a不等于0)的图像与x轴交与A,B两点与y轴交于点c,其中A的坐标为(-2,0),
已知:如图,二次函数y=ax²+bx+c的图像与x轴交于a,b两点,其中a点坐标为
已知:如图,二次函数y=ax²+bx+c的图像与X轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5)
已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的
如图 二次函数Y=ax²+bx+c的图象与X轴交于A.B两点 其中A点的坐标为(-1,0)点C(0,5),D(
已知:二次函数y=ax^2+bx=c的图像与x轴交与A、B两点,其中点A的坐标是(-1,0),与y轴交与负半轴交与点C,
如图,在直角坐标系中,二次函数y=x^2+bx+c的图像与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)
如图,已知二次函数图像的顶点坐标为(2,0),直线Y=X+1与二次函数的图像交于A,B两点,其中点A在Y轴上.
如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点