已知:PA=根号2,PB=4,以AB为一边作正方形ABCD,使P,D两点落在直线AB的两侧.角APB为何值PD最大
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:46:53
已知:PA=根号2,PB=4,以AB为一边作正方形ABCD,使P,D两点落在直线AB的两侧.角APB为何值PD最大
当∠APB=135°时,PD最大.
证明如下:
过A作AQ⊥AP,使Q、B在AP的两侧,且QA=PA.
∵ABCD是正方形,∴AD=AB、∠DAB=90°.
∴∠PAD=∠PAB+∠DAB=90°+∠PAB=∠PAQ+∠PAB=∠QAB.
由QA=PA、AB=AD、∠QAB=∠PAD,得:△QAB≌△PAD,∴QB=PD.
∵QA=PA、QA⊥PA,∴∠APQ=45°、PQ=√2PA=2.
∴PQ+PB=2+4=6.
考查点P、Q、B,显然有:QB≦PQ+PB=6.
很明显,当B、P、Q共线时,QB有最大值为6,即此时PD有最大值.
于是:当PD取得最大值时,∠PAB=180°-∠APQ=180°-45°=135°.
证明如下:
过A作AQ⊥AP,使Q、B在AP的两侧,且QA=PA.
∵ABCD是正方形,∴AD=AB、∠DAB=90°.
∴∠PAD=∠PAB+∠DAB=90°+∠PAB=∠PAQ+∠PAB=∠QAB.
由QA=PA、AB=AD、∠QAB=∠PAD,得:△QAB≌△PAD,∴QB=PD.
∵QA=PA、QA⊥PA,∴∠APQ=45°、PQ=√2PA=2.
∴PQ+PB=2+4=6.
考查点P、Q、B,显然有:QB≦PQ+PB=6.
很明显,当B、P、Q共线时,QB有最大值为6,即此时PD有最大值.
于是:当PD取得最大值时,∠PAB=180°-∠APQ=180°-45°=135°.
已知:PA=根号2,PB=4,以AB为一边作正方形ABCD,使P,D两点落在直线AB的两侧.角APB为何值PD最大
PA=根号2 PB=4以AB为一边的正方形ABCD,使P,D两点落在直线AB的两侧.求PD的最大值及角APB的大小
已知:PA=根号2,PB=4,以AB为一边作正方形ABCD,使P,D两点落在直线AB两侧,当∠APB=45°时,求AP及
已知,PA=根号2,PB=4,以AB为一边做正方形ABCD,使P,D两点落在AB的两侧.
PA=根号2,PB=4,以AB为一边作正方形ABCD,
正方形ABCD内有一点P,已知PA=根号2,PC=3倍根号2,∠APB=135°求PB、PD的长度.
在四棱锥P-ABCD中,底面ABCD是正方形,AB=a,PD=a,PA=PC=根号2a.求异面直线PB与AC所成角的大小
在正方形ABCD内有一点P,且PA=2根号2,PB=1,PD=根号17,则角APB的度数等
已知直线mn和它外边两点ab,并且ab两点在两侧求做一点p使p在直线mn上,使|pa-pb|的值最大
在底面为菱形的四棱锥P-ABCD中,PA=AB=a,PB=PD=根号2a,AC=a,求直线PC与底面ABCD所成角的大小
已知直线l及两侧两点AB,求点P使PA=PB;求点Q使l平分角AQB
已知 如图在正方形abcd中有一点P,且PB=2,PC=4,PA=2根号2,求∠APB的度数?