如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE= 1/2 ED,延长DB到点F,使FB= 1/2
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 13:53:56
如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE= 1/2 ED,延长DB到点F,使FB= 1/2
使FB= 1/2BD 连接AF
(1)求证△ABE∽ADB
(2)求证直线AF与圆O相切
使FB= 1/2BD 连接AF
(1)求证△ABE∽ADB
(2)求证直线AF与圆O相切
证明:(1)∵AB=AC
∴△ABC是等腰三角形,∠ABC=∠ACB
∵点A、B、C、D在⊙O上
∴∠ACB与∠ADB是园周角且同弧AB
∴∠ACB=∠ADB,即∠ABC=∠ADB
∵在△ABE和△ADB中,∠ABC=∠ADB,∠BAD=∠DAB
∴△ABE∽△ADB
(2)连接OA
∵点A、B、C、D在⊙O上,AB=AC
∴OA垂直平分BC
∵AE=1/2ED,FB=1/2BD
∴AD=3/2ED,DF=3/2BD
即AD/ED=DF/BD=3/2
∵在△DAF和△DEB中,
∠ADF=∠EDB,AD/ED=DF/BD
∴△DAF∽△DEB
∴∠F=∠EBD
∴BE∥FA
∴OA⊥AF
∵OA是⊙O的半径
∴AF是⊙O的切线
∴△ABC是等腰三角形,∠ABC=∠ACB
∵点A、B、C、D在⊙O上
∴∠ACB与∠ADB是园周角且同弧AB
∴∠ACB=∠ADB,即∠ABC=∠ADB
∵在△ABE和△ADB中,∠ABC=∠ADB,∠BAD=∠DAB
∴△ABE∽△ADB
(2)连接OA
∵点A、B、C、D在⊙O上,AB=AC
∴OA垂直平分BC
∵AE=1/2ED,FB=1/2BD
∴AD=3/2ED,DF=3/2BD
即AD/ED=DF/BD=3/2
∵在△DAF和△DEB中,
∠ADF=∠EDB,AD/ED=DF/BD
∴△DAF∽△DEB
∴∠F=∠EBD
∴BE∥FA
∴OA⊥AF
∵OA是⊙O的半径
∴AF是⊙O的切线
如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE= 1/2 ED,延长DB到点F,使FB= 1/2
如图,点A,B,C,D在圆O上,AB=AC,AD与BC相交于点E,AE=ED/2,延长DB到点F,使FB=BD/2,连接
如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE= ED,延长DB到点F,使FB= BD,连接AF
(2014•昆明一模)如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=12ED,延长DB到点F,
如图,在△ABC中,AB=AC,D是AB上一点,延长CA到点E,使AE=AD,连接ED并延长交BC于点F,求证;EF⊥B
如图点A、B、C、D在圆O上,AB=AC,AD交BC于点E,AE=2,ED=4求AB的长
如图,在圆o中,c是弧AB的中点,连接AC并延长到点D,使CD=CA,连接DB并延长DB交圆o于点E,连接AE,求证:A
如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE
如图所示,AC⊥AB,DB⊥AB,AD与BC交于点E,EG⊥AB,AE=1/2ED,F是ED的中点,求证FG=FB
如图,点A、B、C、D在圆O上,AB=AC,AD交BC于E,AE=2,ED=4,求AB的长.
如图,A、B、C、D是⊙O上的四点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长.
如图,A,B,C,D分别是圆O上的四个点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长