设A为你阶方阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,证明:a1,a2,a3
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:03:56
设A为你阶方阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,证明:a1,a2,a3线性无关
请不要复制,希望有人看到!
请不要复制,希望有人看到!
lxkzhi 的思路是对的,但后面有点问题,表达也不够严谨,我补充完整了,如下
反证法:
前面同 lxkzhi
假设a1,a2,a3线性相关,则存在不同时为零的三个数k1,k2,k3使得:
k1a1+k2a2+k3a3=0
有条件可知:
(A+E)a1=0
(A-E)a2=0
(A-E)a3=a2
对k1a1+k2a2+k3a3=0 (1)
同时左乘以A-E得
k1(A-E)a1+k2(A-E)a2+k3(A-E)a3=0
k1(A-E)a1+k3a2=0
再同时左乘以A-E,得
k1(A-E)(A-E)a1=0 (0为0向量)
(从下面起是我的补充)
因为(A-E)a1都不为零,且(A-E)a1不等于a2 (这里容易证明,可自己推一下,不明白再问我)
所以k1=0
所以由(1)式得k2a2+k3a3=0 (2)
两边同时左乘(A-E)得
k2(A-E)a2+k3(A-E)a3=0
因为 (A-E)a2 = 0
所以 k3(A-E)a3=0
又 (A-E)a3 不为0
所以k3 = 0
所以由(2)式得 k2 = 0
综上得 k1,k2,k3都为0,与假设矛盾,故假设不成立,即a1,a2,a3线性无关
反证法:
前面同 lxkzhi
假设a1,a2,a3线性相关,则存在不同时为零的三个数k1,k2,k3使得:
k1a1+k2a2+k3a3=0
有条件可知:
(A+E)a1=0
(A-E)a2=0
(A-E)a3=a2
对k1a1+k2a2+k3a3=0 (1)
同时左乘以A-E得
k1(A-E)a1+k2(A-E)a2+k3(A-E)a3=0
k1(A-E)a1+k3a2=0
再同时左乘以A-E,得
k1(A-E)(A-E)a1=0 (0为0向量)
(从下面起是我的补充)
因为(A-E)a1都不为零,且(A-E)a1不等于a2 (这里容易证明,可自己推一下,不明白再问我)
所以k1=0
所以由(1)式得k2a2+k3a3=0 (2)
两边同时左乘(A-E)得
k2(A-E)a2+k3(A-E)a3=0
因为 (A-E)a2 = 0
所以 k3(A-E)a3=0
又 (A-E)a3 不为0
所以k3 = 0
所以由(2)式得 k2 = 0
综上得 k1,k2,k3都为0,与假设矛盾,故假设不成立,即a1,a2,a3线性无关
设A为你阶方阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,证明:a1,a2,a3
设A为你阶方阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,令P=(a1,a2,a
设A为你三方阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,令P=(a1,a2,a
设A为3阶矩阵,a1,a2分别为A的属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,证明a1,a2,a3线
设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa1=a2+a3 证明a1 a2 a3
设A为3阶矩阵,a1,a2为A的分别属于特征值-1和1的特征向量,a3满足Aa3=a2+a3.证明a1,a2,a3线性无
线性代数问题设A为三阶矩阵,a1,a2,为A的分别属于-1,1的特征向量,向量a3满足Aa3=a2+a3,证明a1,a2
线性代数证明题设A为3阶矩阵,a1,a2为矩阵A的分别属于特征值-1和1的特征向量,a3满足Aa3=a2+a3,证明a1
已知A是三阶矩阵,a1是矩阵A属于特征值1的特征向量,a2是齐次方程组Ax=0的非零解,向量a3满足Aa3=a1-a2+
设A为3阶方阵,x1,x2,x3是A的三个不同特征值,对应特征向量分别为a1,a2,a3,令b=a1+a2+a3.
线性代数问题设对称阵A 其特征值互不相等 特征值对应的特征向量分别为a1,a2,a3.an则P=(a1,a2,a3.an
线性代数证明题设a1,a2,a3为n阶方阵的3个特征向量,且对应的特征值互不相同,记β=a1+a2+a3.证明:β,Aβ