已知fn(x)=(1+2x)(1+2^2x)(1+2^3x)……(1+2^nx)设fn(x)展开式中,x、x^2的系数分
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 09:52:24
已知fn(x)=(1+2x)(1+2^2x)(1+2^3x)……(1+2^nx)设fn(x)展开式中,x、x^2的系数分别为an和bn①求an②证明b(n+1)=bn+2^(n+1)an③是否存在实数a、b,使bn=8[2^(n-1)-1](2^na+b)对一切n(n≥2且n∈N)恒成立?
1.一次项系数为:an=2+4+8.+2^n=2^(n+1)-2
2.分析:fn+1(x)比fn(x)多了一个相乘项1+2^(n+1)x
如果这一项选择的是1,那么2次项系数为bn
如果这一项选择的是2^(n+1)x,前n项之积选择比是一次项系数An
故有b(n+1)=bn+[2^(n+1)]an
3.由2知 b(n+1)-bn=[2^(n+1)]an
有bn-b(n-1)=4^n-2^(n+1)
b(n-1)-b(n-2)=4^(n-1)-2^n
...
b2-b1=4^2-2^3 (b1=0)
累加有bn=(4^2+4^3+...+4^n)-(2^3+2^4+...+2^(n+1))
=16/3*(4^(n-1)-1)-8*(2^(n-1)-1)=8[2^(n-1)-1](2^n*2/3-1/3) (1)
要使bn=8[2^(n-1)-1](2^na+b)对一切n(n≥2且n∈N)恒成立,对照(1)式,可得:
a=2/3 ,b= -1/3
2.分析:fn+1(x)比fn(x)多了一个相乘项1+2^(n+1)x
如果这一项选择的是1,那么2次项系数为bn
如果这一项选择的是2^(n+1)x,前n项之积选择比是一次项系数An
故有b(n+1)=bn+[2^(n+1)]an
3.由2知 b(n+1)-bn=[2^(n+1)]an
有bn-b(n-1)=4^n-2^(n+1)
b(n-1)-b(n-2)=4^(n-1)-2^n
...
b2-b1=4^2-2^3 (b1=0)
累加有bn=(4^2+4^3+...+4^n)-(2^3+2^4+...+2^(n+1))
=16/3*(4^(n-1)-1)-8*(2^(n-1)-1)=8[2^(n-1)-1](2^n*2/3-1/3) (1)
要使bn=8[2^(n-1)-1](2^na+b)对一切n(n≥2且n∈N)恒成立,对照(1)式,可得:
a=2/3 ,b= -1/3
已知fn(x)=(1+2x)(1+2^2x)(1+2^3x)……(1+2^nx)设fn(x)展开式中,x、x^2的系数分
已知函数f1(x)=(2x-1)/(x+1) 对于n∈N* 定义fn+1(x)=f1( fn(x)) 求fn(x)解析式
已知f1(x)=(2x-1)/(x+1),对于n=1,2,…,定义fn+1(x)=f1(fn(x)),若f35(x)=f
设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2]
1、(x+1)(2x+1).(nx+1)的展开式中x项的系数是?
设f(x)=–2x+2,记f1(x)=f(x),fn(x)=f[fn-1(x)],n≥2,n∈N,则函数y=fn(x)的
{an}是等差数列,设fn(x)=a1x a2x^2 ...anx^n,n是正偶数,且已知fn(1)=n^2,fn(-1
还有g(x)=x^2-3x+3 fn(x)=1+g(x)+g^2(x)+.+g^n(x)f(x)=limfn(x)(n趋
(1+2X)^3X(1--X)^4的展开式中X^2的系数?
求(3x^2-x+1)(2x+1)^7展开式中,x^7的系数
函数数列{fn(x)}满足f1(1)/根号下(1+x^2) f(n+1)(x)=f1[fn(x)]求f2,f3
二次项定理证明(X+1)(2X+1)(3X+1).(NX+1)展开式中X的系数