作业帮 > 数学 > 作业

已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 00:59:02
已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(不与A、C重合),EF⊥AB,垂足为F.
(1)求证:AD=DB;
(2)设CE=x,BF=y,求y关于x的函数解析式;
(3)当∠DEF=90°时,求BF的长?
已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(
(1)证明:在△ABC中,∵∠C=90°,∠B=30°,
∴∠CAB=60°,
又∵AD平分∠CAB,
∴∠DAB=∠DAC=
1
2∠CAB=30°,
∴∠DAB=∠B,
∴AD=DB.
(2)在△AEF中,∵∠AFE=90°,∠EAF=60°,
∴∠AEF=30°,
∴AE=AC-EC=6-x,AF=
1
2AE=
1
2(6−x),
在Rt△ABC中,∵∠B=30°,AC=6,
∴AB=12,
∴BF=AB-AF=12-
1
2(6−x)=9+
1
2x,
∴y=9+
1
2x,
答:y关于x的函数解析式是y=9+
1
2x(0<x<6).
(3)当∠DEF=90°时,∠CED=180°-∠AEF-∠FED=60°,
∴∠EDC=30°,ED=2x,
∵∠C=90°,∠DAC=30°,
∴∠ADC=60°,
∴∠EDA=60°-30°=30°=∠DAE,
∴ED=AE=6-x.
∴有2x=6-x,得x=2,
此时,y=9+
1
2×2=10,
答:BF的长为10.