作业帮 > 数学 > 作业

用数学归纳法证明1+a+a2++an=1-an+2/1-a(a≠1,nN),在验证n=1时,左边计算所得

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:30:12
用数学归纳法证明1+a+a2++an=1-an+2/1-a(a≠1,nN),在验证n=1时,左边计算所得的式子是
用数学归纳法证明1+a+a2++an=1-an+2/1-a(a≠1,nN),在验证n=1时,左边计算所得
是1+a+a^2+……+a^n=[1-a^(n+1)]/(1-a)吧
n=1,左边=1+a,右边=(1-a^2)/(1-a)=1+a,左=右,成立
n=k时成立,则n=k+1时
左=[1-a^(k+1)]/(1-a)+a^(k+1)=[1-a^(k+1)+a^(k+1)-a^(k+2)]/(1-a)=[1-a^(k+2)]/(1-a)=右边
所以命题对所有正整数均成立.证毕!