(2012•朝阳区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,-5),过点N作x轴的平行线交
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/20 08:15:09
(2012•朝阳区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,-5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6.
(1)求此抛物线的解析式;
(2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P的坐标;
(3)设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM?若存在,求出点Q的坐标;若不存在,说明理由.
(1)求此抛物线的解析式;
(2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P的坐标;
(3)设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM?若存在,求出点Q的坐标;若不存在,说明理由.
(1)由题意得,MN平行x轴,MN=6,点N坐标为(2,-5),
故可得点M坐标为(-4,-5),
∵y=ax2+bx+3过点M(-4,-5)、N(2,-5),
∴可得
4a+2b+3=−5
16a−4b+3=−5,
解得:
a=−1
b=−2,
故此抛物线的解析式为y=-x2-2x+3.
(2)设抛物线的对称轴x=-1交MN于点G,
若△DMN为直角三角形,则GD1=GD2=
1
2MN=3,
可得D1(-1,-2),D2(-1,-8),
从而可求得直线MD1解析式为;y=x-1,直线MD2解析式为:y=-x-9,
将P(x,-x2-2x+3)分别代入直线MD1,MD2的解析式,
得-x2-2x+3=x-1①,-x2-2x+3=-x-9②、
解①得 x1=1,x2=-4(舍),
即P1(1,0);
解②得 x3=3,x4=-4(舍),
即P2(3,-12);
故当△DMN为直角三角形时,点P的坐标为(1,0)或(3,-12).
(3)设存在点Q(x,-x2-2x+3),使得∠QMN=∠CNM,
①若点Q在MN上方,过点Q作QH⊥MN,交MN于点H,
则QH=-x2-2x+3+5,MH=(x+4)、
故
QH
MH=tan∠CNM=4,即-x2-2x+3+5=4(x+4)、
解得x1=-2,x2=-4(舍),
故可得点Q1(-2,3);
②若点Q在MN下方,
同理可得Q2(6,-45).
综上可得存在点Q,使∠QMN=∠CNM,点Q的坐标为(-2,3)或(6,-45).
故可得点M坐标为(-4,-5),
∵y=ax2+bx+3过点M(-4,-5)、N(2,-5),
∴可得
4a+2b+3=−5
16a−4b+3=−5,
解得:
a=−1
b=−2,
故此抛物线的解析式为y=-x2-2x+3.
(2)设抛物线的对称轴x=-1交MN于点G,
若△DMN为直角三角形,则GD1=GD2=
1
2MN=3,
可得D1(-1,-2),D2(-1,-8),
从而可求得直线MD1解析式为;y=x-1,直线MD2解析式为:y=-x-9,
将P(x,-x2-2x+3)分别代入直线MD1,MD2的解析式,
得-x2-2x+3=x-1①,-x2-2x+3=-x-9②、
解①得 x1=1,x2=-4(舍),
即P1(1,0);
解②得 x3=3,x4=-4(舍),
即P2(3,-12);
故当△DMN为直角三角形时,点P的坐标为(1,0)或(3,-12).
(3)设存在点Q(x,-x2-2x+3),使得∠QMN=∠CNM,
①若点Q在MN上方,过点Q作QH⊥MN,交MN于点H,
则QH=-x2-2x+3+5,MH=(x+4)、
故
QH
MH=tan∠CNM=4,即-x2-2x+3+5=4(x+4)、
解得x1=-2,x2=-4(舍),
故可得点Q1(-2,3);
②若点Q在MN下方,
同理可得Q2(6,-45).
综上可得存在点Q,使∠QMN=∠CNM,点Q的坐标为(-2,3)或(6,-45).
(2012•朝阳区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,-5),过点N作x轴的平行线交
平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,-5),过点N作x轴的平行线交此抛物线左侧于点M,MN=
在平面直角坐标系xOy中,抛物线y=ax²+bx+3经过点N(2,-5)
在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于点A、B两点,交y轴于点C,其
(2014•巴中)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx-4与x轴交于点A(-2,0)和点B,与y轴交于
如图,在平面直角坐标系xoy中,抛物线y=1/18^2-4/9x-10与y轴的交点为点B,过点B作X轴的平行线BC,交抛
(2012•朝阳区二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(-3,0)、B(4,0)两点,且与y
在平面直角坐标系xOy中,抛物线y=1/4x²+bx经过点A(2,-4)
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(-3,0)
在平面直角坐标系xOy中,已知A(-2,0),B(3,0),C(5,6),过点C作x轴的平行线y轴交与点D:(3)设点E
在平面直角坐标系xOy中,过点P(0,2)任作一条与抛物线y=ax2(a>0)交于两点的直线