已知四棱锥p-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60°,E.F分别是BC.PC的中点.(1)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:23:03
已知四棱锥p-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60°,E.F分别是BC.PC的中点.(1)若H为PD上的动点,EH与平面PAD所成最大角的正切值为2分之根号6,求二面角E-AF-C的余弦值?
看这个
在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'
提示:
棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.
又∵PA⊥ABCD.∴PA⊥EA
∴EA⊥面PAC
∴EA⊥PC
又∵AH⊥PC,∴PC⊥面AEH',∴PC⊥EH'
∠EH'A为EH与平面PAD所成最大角.
AEH'为直角三角形.
tan[∠EH'A]=AE/AH'=(√3*a/2)/AH'=√6/2
所以AH'=√2a/2
所以∠ADH'=45度.则PA=a=AC.
则:AF⊥FC.
AF=√2a/2
EF=√2a/2
AE=√3a/2
AEF为等腰三角形.
过E作EG垂直于AF,过G作GK垂直AF,交AC于K.
求得EG=√30a/8
AG=3√2a/8
GK‖FC,AF=FC
所以GK=AG=3√2a/8
AK=AG*√2=3a/4
CK=AC-AK=a/4
角ECK=60度.恰好CK=EC/2
所以EK⊥KC.而EK⊥PA,所以EK⊥平面AGK
所以三角形EGK是直角三角形.
cos[EGK]=GK/GE
=(3√2a/8)/(√30a/8)
=√15/5
已知四棱锥p-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60°,E.F分别是BC.PC的中点.(1)
已知四棱锥P-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60度,E,F分别是BC,PC的中点,证明A
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点
空间角已知,四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别为BC、PC的中点,
已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA垂直面ABCD,角ABC=60度,E.F分别是BC.PC的中点
立体几何已知四棱锥P-ABCD,地面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中
如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC,PC的中点.
如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
在四棱锥P -ABCD中,底面ABCD是菱形,角ABC=60度,PA垂直平面ABCD,点M,N分别为BC,PA的中点
高中立体几何题已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的