在正方体ABCD-A1B1C1D1中,P是DD1的中点,O为底面ABCD的中心,求证B1O垂直平面PAC?求速解
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:46:28
在正方体ABCD-A1B1C1D1中,P是DD1的中点,O为底面ABCD的中心,求证B1O垂直平面PAC?求速解
利用赋值法,令AB=2.∵AC⊥平面BB1O,∴B1O⊥AC.容易证得:∠OBB1=∠ODP=∠PD1B1=∠B1A1D1=90°.∴由勾股定理,有:B1O^2=BB1^2+BO^2=4+(BD/2)^2=4+(AD^2+AB^2)/4=4+(4+4)/4=6.PO^2=PD^2+DO^2=(DD1/2)^2+BO^2=1+2=3.PB1^2=PD1^2+B1D1^2=PD^2+(A1D1^2+A1B1^2)=1+(4+4)=9.∴B1O^2+PO^2=PB1^2,∴由勾股定理的逆定理,有:B1O⊥PO.由B1O⊥AC、B1O⊥PO、AC∩PO=O,得:B1O⊥平面PAC.
在正方体ABCD-A1B1C1D1中,P是DD1的中点,O为底面ABCD的中心,求证B1O垂直平面PAC?求速解
正方体ABCD-A1B1C1D1中,P为DD1的中点,O为底面ABCD中心,求证:B1O⊥平面PAC
如图所示,在正方形ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,q求证B1D⊥平面PAC
如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点
已知在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证平面EAC垂直于平面AB1C
正方体ABCD—A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,棱长为2
在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD
在正方形ABCD—A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点 1.求证:直线BD1//平面PAC
立体几何填空题在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,B为棱A1B1上任意一点,
在正方体ABCD-A1B1C1D1中,E,F分别是AB,BC的中点,0是底面ABCD的中心,求证EF垂直平面B1BO
一道证明几何题在正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心.求证OE垂直ACD1
在正方体A1B1C1D1-ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心,求证:EF⊥平面BB1O