已知数列{an}、{bn}满足a1=2,a2=4,b(n)=a(n+1)-a(n),b(n+1)=2b(n)+2 求 {
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 04:13:53
已知数列{an}、{bn}满足a1=2,a2=4,b(n)=a(n+1)-a(n),b(n+1)=2b(n)+2 求 {an}和{bn}的通项公式
速度来回答哈.
速度来回答哈.
(n+1)=2b(n)+2
b(n+1)+2=2(b(n)+2)
b(n)+2是首项为4,公比为2的等比数列
b(n)+2=2^(n+1)
b(n)=2^(n+1)-2
b1=a2-a1
b2=a3-a2
b3=a4-a3
...
bn=a(n+1)-a(n)
所有式子相加
b1+b2+..+bn=a(n+1)-a1=a(n+1)-2
b1+b2+..+bn=2^2+2^3+..2^(n+1)+2n=2^2(1-2^n)/(1-2)+2n=2^(n+2)-4-2n
a(n+1)-2=2^(n+2)-4-2n
a(n+1)=2^(n+2)-2-2n
a(n)=2^(n+1)-2n
b(n+1)+2=2(b(n)+2)
b(n)+2是首项为4,公比为2的等比数列
b(n)+2=2^(n+1)
b(n)=2^(n+1)-2
b1=a2-a1
b2=a3-a2
b3=a4-a3
...
bn=a(n+1)-a(n)
所有式子相加
b1+b2+..+bn=a(n+1)-a1=a(n+1)-2
b1+b2+..+bn=2^2+2^3+..2^(n+1)+2n=2^2(1-2^n)/(1-2)+2n=2^(n+2)-4-2n
a(n+1)-2=2^(n+2)-4-2n
a(n+1)=2^(n+2)-2-2n
a(n)=2^(n+1)-2n
已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列
已知数列an,bn满足a1=1,a2=3,(b(n)+1)/bn=2,bn=a(n+1)-an,(n∈正整数)
急 设A1=2,A2=4,数列Bn满足:Bn=A(n+1)-An,B(n+1)=2Bn +2
急 设A1=2,A2=4,数列BN满足:Bn=A(n+1)-An,B(n+1)=2Bn+2
设a1=2,a2=4,数列{bn}满足:bn=a(n+1)-an,b(n+1)=2bn+2.
设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1) –An,B(n+1)=2Bn+2.
求数列的第二小问已知数列an,bn满足a1=1,a2=2,b(n+1)=3bn,bn=a(n+1)-an &
已知数列an,bn,cn满足[a(n+1)-an][b(n+1)-bn]=cn
已知数列{an}和{bn}满足关系式:bn=a1+a2+a3+...+an/n(n属于N*) (1)若bn=n^2,求数
已知数列{An}与{Bn}满足:A1=λ,A(n+1)=2/3An+n-4,Bn=(-1)^n*(An-3n+21),其
已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足:bn=anan+2(n∈N*)
数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证