作业帮 > 数学 > 作业

基本不等式应用的证明问题2

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 20:58:57
基本不等式应用的证明问题2
已知a b c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
基本不等式应用的证明问题2
因为a、b、c是正数
由基本不等式有a^2+b^2≥2ab>0
b^2+c^2≥2bc>0
c^2+a^2≥2ac>0
所以a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)
≥a*2bc+b*2ac+c*2ab
=6abc
又因为a、b、c不全相等,所以上面三个式子不能同时成立
所以a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc