作业帮 > 数学 > 作业

不等式 若2a>b>0,则a^2+4/((2a-b)b)得最小值为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 19:49:28
不等式 若2a>b>0,则a^2+4/((2a-b)b)得最小值为
不等式 若2a>b>0,则a^2+4/((2a-b)b)得最小值为
a²+4/[(2a-b)b]
首先有:(m+n)/2≥√mn,那么mn≤(m+n)²/4
所以(2a-b)b≤(2a-b+b)²/4=a²,当且仅当2a-b=b,即a=b时取等
那么4/[(2a-b)b]≥4/a²
所以a²+4/[(2a-b)b]≥a²+4/a²≥2√4=4,当且仅当a²=4/a²,即a=√2时取等
所以a²+4/[(2a-b)b]最小值为4,此时a=b=√2