已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接了AF,BF,若|A
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 06:48:50
已知椭圆C:
x
如图所示,
在△AFB中,|AB|=10,|BF|=8,cos∠ABF= 4 5, 由余弦定理得 |AF|2=|AB|2+|BF|2-2|AB||BF|cos∠ABF =100+64-2×10×8× 4 5 =36, ∴|AF|=6,∠BFA=90°, 设F′为椭圆的右焦点,连接BF′,AF′. 根据对称性可得四边形AFBF′是矩形. ∴|BF′|=6,|FF′|=10. ∴2a=8+6,2c=10,解得a=7,c=5. ∴e= c a= 5 7. 故选B.
已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,过F1的直线交C于A、B两点,若AB⊥AF
(2014•上饶二模)已知椭圆C:x2a2+y2b2=1(a>b>0),过椭圆C的右焦点F的直线l交椭圆于A,B两点,交
已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线交椭圆C于A、B两
已知椭圆C:x2a2+y2b2=1(a>b>0),F(2,0)为其右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2.
设椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭
(2011•金华模拟)设椭圆C:x2a2+y2b2=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF
如图,已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,过左焦点F(-3,0)且斜率为k的直线交椭圆于A,
(2011•深圳一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点F及点A(0,b),原点O到直线FA的距离
椭圆 x2a2+y2b2=1(a>b>0)上一点A关于原点的对称点为B,F为椭圆的右焦点,AF⊥BF,∠ABF
过椭圆的一个焦点F(-c,0),倾斜角为arccos(3/4)的直线交椭圆于A、B两点,若|AF|:|BF|=1:3,则
已知椭圆的方程为x2a2+y2b2=1(a>b>0),过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线
已知双曲线x2a2−y2b2=1(a>0,b>0),过其右焦点且垂直于实轴的直线与双曲线交于M,N两点,O为坐标原点.若
|