作业帮 > 数学 > 作业

在三角形ABC中,角A、B、C所对的边分别是a、b、c,已知D点是BC边的中点,且向量AD·向量BC=(a^2-ac)/

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 15:24:27
在三角形ABC中,角A、B、C所对的边分别是a、b、c,已知D点是BC边的中点,且向量AD·向量BC=(a^2-ac)/2
则角B=?
在三角形ABC中,角A、B、C所对的边分别是a、b、c,已知D点是BC边的中点,且向量AD·向量BC=(a^2-ac)/
因为向量BC=向量AC-向量AB,又因为D点是BC边的中点,则向量AD=(向量AC+向量AB)/2
所以向量AD·向量BC=(向量AC^2-向量AB^2)/2=(b^2-c^2)/2
所以(b^2-c^2)/2=(a^2-ac)/2 ,即b^2-c^2=a^2-ac
根据余弦定理,可得cosB=1/2,因此B=60度.