10.若 sinBsinC=(cosA/2)2则 是( )
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 14:57:10
10.若 sinBsinC=(cosA/2)2则 是( )
A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形
11.数列{an}满足a1=1,a2=2/3 ,且 1/(an-1)+1/(an+1)=2/an (n≥2),则an等于( )
A.2/(n+1) B.( 2/3)n-1 C.( 2/3)n D. 2/(n+2)
错了,第二题都不会
A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形
11.数列{an}满足a1=1,a2=2/3 ,且 1/(an-1)+1/(an+1)=2/an (n≥2),则an等于( )
A.2/(n+1) B.( 2/3)n-1 C.( 2/3)n D. 2/(n+2)
错了,第二题都不会
A.等腰三角形
在三角形ABC中 A+B+C=180度
所以 A=180-(B+C)
因为 COSA=2(COSA/2)^2-1
所以(COSA/2)^2=(COSA+1)/2
即 (COSA+1)/2=sinBsinC
COSA+1=2sinBsinC
COS[180-(B+C)]+1=2sinBsinC
-cos(B+C)+1=2sinBsinC
sinBsinC-cosBcosC-2sinBsinC=-1
cosBcosC+sinBsinC=1
cos(B-C)=1 cos0=1
所以 B-C=0
所以 B=C
所以 三角形ABC是等腰三角形
A.2/(n+1)
1/(an-1)+1/(an+1)=2/an
所以{1/an}是等差数列
1/a1=1
1/a2=3/2
d=1/a2-1/a1=3/2-1=1/2
1/an=1/a1+(n-1)d
=1+(n-1)*1/2
=1+n/2-1/2
=(n+1)/2
an=2/(n+1)
an=2/(n+1)满足首项
在三角形ABC中 A+B+C=180度
所以 A=180-(B+C)
因为 COSA=2(COSA/2)^2-1
所以(COSA/2)^2=(COSA+1)/2
即 (COSA+1)/2=sinBsinC
COSA+1=2sinBsinC
COS[180-(B+C)]+1=2sinBsinC
-cos(B+C)+1=2sinBsinC
sinBsinC-cosBcosC-2sinBsinC=-1
cosBcosC+sinBsinC=1
cos(B-C)=1 cos0=1
所以 B-C=0
所以 B=C
所以 三角形ABC是等腰三角形
A.2/(n+1)
1/(an-1)+1/(an+1)=2/an
所以{1/an}是等差数列
1/a1=1
1/a2=3/2
d=1/a2-1/a1=3/2-1=1/2
1/an=1/a1+(n-1)d
=1+(n-1)*1/2
=1+n/2-1/2
=(n+1)/2
an=2/(n+1)
an=2/(n+1)满足首项
sinBsinC=cos²A/2,则△ABC是?
三角形ABC中,若cosBcosC-sinBsinC=1/2
在三角形ABC中,若sinA=2sinBsinC,且sin^2*A=sin^2*B+sin^2*C,则三角形ABC是
在三角形ABC中,已知a向量+c向量-b平方=ac且cosA=2sinBsinc-1,试确定三角形ABC形状
tana=-1/2,则2*sina-3*sina*cosa-5*(cosa)*(cosa)的值是
三角形ABC中,(sinA)^2=(sinB)^2+sinBsinC+(sinC)^2,则A=?
在三角形ABC中,若sinBsinC=cos²(A/2),判断三角形形状
若abc分别是角A,B,C的对边,求证:△ABC的面积S=1/2(a^2)sinBsinC/sinA
若tana=1/2,则(sina+cosa)/(2sina+3cosa)=多少?
若tana=2,则(3sina-2cosa)/(sina+cosa)
证明:2(cosa-cosa)/(1+cosa+cosa)=cosa/(1+sina)-sina/(1+cosa).
已知b²+c²=a²+bc(1)求角A的大小(2)若sinBsinC=sin²A