算三重积分∫∫∫(x^2+y^2)^(-0.5)dv,其中V为球面x^2+y^2+z^2=4与抛物面z=(x^2+y^2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:07:19
算三重积分∫∫∫(x^2+y^2)^(-0.5)dv,其中V为球面x^2+y^2+z^2=4与抛物面z=(x^2+y^2)/3所围成的立体.
要用极坐标,答案5*3^(0.5)/pi,我感觉答案是错的,求各位大侠算算,
他这个答案积分 写的是 drdθdz我感觉他少写个r应该是rdrdθdz
还是觉得你是对的
要用极坐标,答案5*3^(0.5)/pi,我感觉答案是错的,求各位大侠算算,
他这个答案积分 写的是 drdθdz我感觉他少写个r应该是rdrdθdz
还是觉得你是对的
应该是柱坐标吧,极坐标是对于二位图形的.
V为球面x^2+y^2+z^2=4与抛物面z=(x^2+y^2)/3所围成的立体,也就是上面是球面,下面是抛物面.故z的范围为(x^2+y^2)/3≤z≤√(4-x^2-y^2),上半个球面z大于0.
化为柱坐标为(ρ^2)/3≤z≤√(4-ρ^2)
x^2+y^2+z^2=4与z=(x^2+y^2)/3的交平面为z=1,x^2+y^2=3
故将图形投影至XOY平面,图形是ρ=x^2+y^2=3
所以ρ,θ的范围为:0≤ρ≤√3,0≤θ≤2π
dV=ρdρdθdz
故积分化为
I=∫∫∫(x^2+y^2)^(-0.5)dv
=∫∫∫(1/ρ)ρdρdθdz
2π √3 √(4-ρ^2)
=∫ dθ ∫ dρ∫ dz
0 0 (ρ^2)/3
√3
=2π*∫ [√(4-ρ^2)- (ρ^2)/3]dρ
0
=2π(2π/3+√3/6)
我也和答案不一样,也许答案有问题或者我最后一步积分有问题.
打这么半天不容易啊T_T
V为球面x^2+y^2+z^2=4与抛物面z=(x^2+y^2)/3所围成的立体,也就是上面是球面,下面是抛物面.故z的范围为(x^2+y^2)/3≤z≤√(4-x^2-y^2),上半个球面z大于0.
化为柱坐标为(ρ^2)/3≤z≤√(4-ρ^2)
x^2+y^2+z^2=4与z=(x^2+y^2)/3的交平面为z=1,x^2+y^2=3
故将图形投影至XOY平面,图形是ρ=x^2+y^2=3
所以ρ,θ的范围为:0≤ρ≤√3,0≤θ≤2π
dV=ρdρdθdz
故积分化为
I=∫∫∫(x^2+y^2)^(-0.5)dv
=∫∫∫(1/ρ)ρdρdθdz
2π √3 √(4-ρ^2)
=∫ dθ ∫ dρ∫ dz
0 0 (ρ^2)/3
√3
=2π*∫ [√(4-ρ^2)- (ρ^2)/3]dρ
0
=2π(2π/3+√3/6)
我也和答案不一样,也许答案有问题或者我最后一步积分有问题.
打这么半天不容易啊T_T
算三重积分∫∫∫(x^2+y^2)^(-0.5)dv,其中V为球面x^2+y^2+z^2=4与抛物面z=(x^2+y^2
高数三重积分利用球面坐标计算三重积分Ω根号下x^2+y^2+z^2dv其中Ω是由锥面z=根号x^2+y^2 及球面x^2
三重积分计算I=∫∫∫(x+y+z)^2dv..设V:x^2+y^2+z^2
∫∫∫Ω√x^2+y^2+z^2dv,Ω是由球面x^2+y^2+z^2=z所围成的区域?用球面坐标变换求上述三重积分.
在球面坐标系下计算三重积分∫∫∫Ωz^2dv,Ω:x^2+y^2+z^2≤R^2,x^2+y^2
计算三重积分I=∫∫∫Ω(x^2+y^2+z^2)dv,其中Ω:x^2+y^2+z^2=a^2
∫∫∫x*e^(x^2+y^2+z^2)^2dv 体积由球面x^2+y^2+z^2=1与球面x^2+y^2+z^2=4之
高数三重积分问题例如三重积分为∫∫∫(x^2+y^2-+z^2)^2dv 是怎样等于∫∫∫(x^2+y^+z^2)dv
三重积分求体积,∫∫∫(y²+z²) dv,积分区域为由xoy面上的曲线y²=2x绕x轴旋
$$$︸(x^2+y^2+z^2)dv,其中︸是由球面x^2+y^2+z^2=1所围成的闭区域,计算此三重积分
计算三重积分∫∫∫(x^2+y^2+z^2)dv,其中Ω由z=x^2+y^2+z^2所围成的闭区域.
求三重积分∫dv,积分区域是由z=x^2+y^2,z=1/2*(x^2+y^2),x+y=±1,x-y=±1围成