f(x)=axlnx,若m>0,n>0,a>0,证明:f(m)+f(n)+a(m+n)ln2≥f(m+n)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 17:55:39
f(x)=axlnx,若m>0,n>0,a>0,证明:f(m)+f(n)+a(m+n)ln2≥f(m+n)
还有求函数f(x)的单调区间和最值
还有求函数f(x)的单调区间和最值
即证:a(mlnm+nlnn)+a(m+n)ln2≥a(m+n)ln(m+n)
化简:mlnm+nlnn+(m+n)ln2≥(m+n)ln(m+n)
即:m[lnm+ln2-ln(m+n)]+n[lnn+ln2-ln(m+n)]≥0
即:mln[2m/(m+n)]+nln[2n/(m+n)]≥0
即:ln[2/(1+n/m)]+(n/m)ln[2/(1+m/n)]≥0
令x=n/m,即证函数:g(x)=ln[2/(1+x)]+xln[2x/(1+x)]≥0
求导可得:g′(x)=-1/(1+x)+ln[2x/(1+x)]+x[1/x-1/(1+x)]
=ln[2x/(1+x)]=0
解得:x=1.
当x≥1时g′(x)≥0,g(x)单调递增;
当x≥1时g′(x)≤0,g(x)单调递减.
所以g(x)最小值是g(1)=0.
所以f(m)+f(n)+a(m+n)ln2≥f(m+n)
化简:mlnm+nlnn+(m+n)ln2≥(m+n)ln(m+n)
即:m[lnm+ln2-ln(m+n)]+n[lnn+ln2-ln(m+n)]≥0
即:mln[2m/(m+n)]+nln[2n/(m+n)]≥0
即:ln[2/(1+n/m)]+(n/m)ln[2/(1+m/n)]≥0
令x=n/m,即证函数:g(x)=ln[2/(1+x)]+xln[2x/(1+x)]≥0
求导可得:g′(x)=-1/(1+x)+ln[2x/(1+x)]+x[1/x-1/(1+x)]
=ln[2x/(1+x)]=0
解得:x=1.
当x≥1时g′(x)≥0,g(x)单调递增;
当x≥1时g′(x)≤0,g(x)单调递减.
所以g(x)最小值是g(1)=0.
所以f(m)+f(n)+a(m+n)ln2≥f(m+n)
已知函数,f(x)=|x-a| (a>0) (1)求证f(m)+f(n)≥|m-n| (2)解不等式f(x)+f(-x)
若m+n不等于零,f(x)是奇函数,[f(m)+f(n)]/m+n>0,怎样证明f(x)的单调性
函数f(x)定义域 x不等于0 m,n属于r f(m.n)=f(m)+f(n) (1)判断f(x)奇偶性 (2)f(4)
已知定义在R上的函数f(x)对任意的m,n都满足f(m+n)=f(m)f(n)+f(m)+f(n),当x>0时,f(x)
f(x)=(1/a)-(1/x)(x>0,a>0),若f(x)在[m,n]上的值域是[m,n] (0
函数f(x)的定义域为R,若对一切实数m.n都有f(m-n)=f(m)+(n-2m-1)n成立.且f(0)=1,求f(x
设函数f(x)的定义域为R,对于任意实数m,n总有f(m+n)=f(m)*f(n),且x>0时,0
函数f x 的定义域为R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0
设函数f(x)的定义域是R,对于任意实数m,n,恒有恒有f(m+n)=f(m)×f(n),且x>0时
已知函数f(x)对任意实数m,n都有f(m+n)=f(m)+f(n)-1 且当x>0时有
斐波那契数列 性质 f(x )为菲波拿且数列 证明F(m+n)=f(n-1)*f(m)+f(n)*f(m+1)
设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为__