作业帮 > 数学 > 作业

在等腰梯形ABCD中,AD∥BC,一底AD在x轴上,且A(1,0)、AD=5,BC=3,tan∠ADC=2;抛物线y=a

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:27:51
在等腰梯形ABCD中,AD∥BC,一底AD在x轴上,且A(1,0)、AD=5,BC=3,tan∠ADC=2;抛物线y=ax2+bx+c经过A、D、C三点,与y轴交于点E.(1)直接写出点B、C、的坐标及CD的长;(2)求抛物线的解析式,并判断点B是否在该抛物线上;(3)若点P、Q分别是x轴、y轴上的动点,问:是否存在这样的P、Q使得四边形BCPQ的周长最小?如果存在,请写出P、Q的坐标,并求出四边形BCPQ的最小周长,如果不存在,请说明理由.
在等腰梯形ABCD中,AD∥BC,一底AD在x轴上,且A(1,0)、AD=5,BC=3,tan∠ADC=2;抛物线y=a
(1)B(1.5,-3) C(4.5,-3) CD=(二分之三倍根号五)不好意思,实在不会打.
tan∠ADC=2 →C点的x轴和y轴关系→通过二次函数图象性质和特点计算坐标
(2)时间匆忙,方法说下,你自己算下吧!
用交点法y=a(x-x1)(x-x2) 注:x1和x2分别为交点坐标,把B或C点的横、纵坐标带进去即可
(3)存在
可以把每条边都用方程表示出来,可能有点麻烦.
实在不好意思,看到这道题时,我正好有事,步骤没能详细给出,第(3)题的方法可能很复杂,只是点下思路,